Responsive image
博碩士論文 etd-0828109-170718 詳細資訊
Title page for etd-0828109-170718
論文名稱
Title
間白質10基因多型性在川崎氏症與急性冠狀動脈病變的危險性
Association of IL-10 Promoter Genetic Polymorphisms with the Risk of Kawasaki Disease and Development of Acute Coronary Artery Lesions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-16
繳交日期
Date of Submission
2009-08-28
關鍵字
Keywords
間白質-10、冠狀動脈病變、連鎖不平衡檢定、川崎氏症
coronary artery lesions, transmission Disequilibrium test, kawasaki disease, interleukin-10
統計
Statistics
本論文已被瀏覽 5613 次,被下載 0
The thesis/dissertation has been browsed 5613 times, has been downloaded 0 times.
中文摘要
川崎氏症是目前最常見的小兒後天型心臟病,其致病原因可能歸咎於感染、免疫反應及基因易感性的聯合效應,約有20-48%的川崎氏症小孩會併發急性冠狀動脈病變,此外,在沒經過治療的狀況下有將近20-30%的患者會轉變為慢性冠狀動脈病變,即使經過治療,仍有2-6%的患者會轉變為慢性冠狀動脈病變。根據最近的流行病學研究指出,亞洲族群具有較高的發生率,而台灣具有世界第三高的發生率(自2002年至2006年的調查,每十萬名五歲以下的嬰幼兒其年發生率為69名)。許多研究已經指出和正常孩童和急性發燒的病童相比,急性期川崎氏症患者的血漿中的間白質10的量分別高出將近八到三十三倍及四到五倍,在急性期上升的間白質10,不但在亞急性期及恢復期會下降,更在注射靜脈免疫球蛋白後立即下降,迅速的改善免疫病徵,以上的研究顯示了間白質10高表現量和川崎氏症的免疫特徵的相關性,但至今仍無法解釋間白質10是否只是急性期川崎氏症的表現還是其在造成川崎氏症的病理原因上扮演一個重要角色。因此我們以134組父母小孩三人組、247名川崎氏症患者及129名健康控制對照組和76名具有急性冠狀動脈病變的川崎氏症患者及76名不具有急性冠狀動脈病變的川崎氏症患者的配對控制對照組來探討間白質10啟動子(-1082、-819、-592)的基因多型性與川崎氏症及是否併發急性冠狀動脈病變的風險性。根據連鎖不平衡檢定的結果,未傳遞的單基因體型ATA和傳遞的單基因體型(ACC+GCC)具有顯著性差異(p值分別為0.023和0.011),即使經過1,000次排列計算仍具有顯著性差異(p值分別為0.026和0.010)。此外,和間白質10-819基因型TT相比,基因型TC和CC具有顯著降低急性冠狀動脈病變的風險性(校正勝算比分別為0.93、0.07,95%信賴區間分別為0.47-1.81、0.01-0.62)。和間白質10-592基因型AA相比,基因型AC和CC具有顯著降低急性冠狀動脈病變的風險性(校正勝算比分別為0.90、0.17,95%信賴區間分別為0.46-1.75、0.03-0.87)。更進一步比較,和間白質10雙基因體型ATA/ATA相比,GCC+ACC具有顯著降低急性冠狀動脈病變的風險性(校正勝算比分別為0.18,95%信賴區間分別為0.04-0.72)。因此間白質基因單體型及雙體型在川崎氏症家庭中具有顯著的連鎖傳遞不平衡,而間白質10-819和-592單基因多型性對於是否會併發急性冠狀動脈病變的易感性扮演重要的角色。
Abstract
Kawasaki disease (KD) is the most common cause of paediatric acquired heart disease which may be attributed to the combined effects of infection, immunological response, and genetic susceptibility. Acute coronary artery lesions (CALs) develop in 20-48 % KD children. In addition, chronic CALs develop in approximately 20-30% of untreated KD children. Although KD children treated with IVIG, 2-6% still develop chronic CALs. According to recent epidemiological studies, Asian populations have a much higher incidence of KD. Taiwan has the third highest annual incidence in the world (69 per 100,000 children < 5 years of age between 2003 and 2006). Several studies have shown that KD patients spontaneously produce high levels of IL- 10. Plasma or serum IL-10 levels of KD children in acute phase were nearly 8-33 fold and 4-5 fold higher than those of healthy controls and those of the acute febrile children, respectively. The elevated IL-10 levels during the acute phase of KD not only decreased during subacute and convalescent phase, but also decreased immediately after IVIG administration, coincidently rapid improvement of inflammatory symptoms. The above studies show a correlation of high IL-10 levels with inflammatory features of KD, but do not answer the question of whether high levels of IL-10 may be simply a byproduct of acute KD, or whether it may play a role in the pathogenesis of KD. Therefore, a family-based linkage study of 134 case-parents trios, a case-control study of 247 KD children and 129 normal controls, and a matched case-control study of 76 KD cases with acute coronary artery lesions (CALs) and 76 KD controls without acute CALs were carried out to evaluate the association of genetic single nucleotide polymorphisms (SNP) in IL-10 promoter (-1082, -819, and -592) with the risk of KD and acute CALs. Based on the Transmission Disequilibrium test (TDT) results, significant undertransmission of haplotype ATA and overtransmission of haplotype (ACC+GCC) were found for KD (p = 0.023 and 0.011, respectively), even after 1,000 times permutation (p = 0.026 and 0.010, respectively). In addition, the TC and CC genotype of IL-10-819T>C were significantly associated with the decreased risk of acute CALs (AOR, 0.93; 95% CI, 0.47-1.81 and AOR, 0.07; 95% CI, 0.01-0.62, respectively), as compared to TT genotype. The carries of AC and CC genotype in IL-10-592A>C were with significantly decreased risk of acute CALs (AOR, 0.90; 95%CI, 0.46-1.75 and AOR, 0.17; 95%CI, 0.03-0.87, respectively), as compared to those with AA genotype. Furthermore, as compared with ATA/ATA diplotype, GCC+ACC/GCC+ACC diplotype of IL10 was associated with the decreased risk of acute CALs (AOR, 0.18; 95% CI, 0.04-0.72). In conclusion, the haplotype and diplotype of IL10-1082/-819/-592 were significant differences in the transmission in KD families and that the IL10-819 and -592 SNPs played important role for the sequelae of acute CALs.
目次 Table of Contents
1.1 Backgrounds and Significances 12
1.2 Subjects and Methods 21
1.3 Results 25
1.4 Discussion 30
1.5 Tables 36
1.6 References 46
參考文獻 References
Akdis, C.A., Joss, A., Akdis, M., Faith, A., and Blaser, K. (2000). A molecular basis for T cell suppression by IL-10: CD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. Faseb J 14, 1666-1668.

Asano, T., and Ogawa, S. (2000). Expression of IL-8 in Kawasaki disease. Clinical and experimental immunology 122, 514-519.

Barton, M., Melbourne, R., Morais, P., and Christie, C. (2002). Kawasaki syndrome associated with group A streptococcal and Epstein-Barr virus co-infections. Ann Trop Paediatr 22, 257-260.

Beebe, A.M., Cua, D.J., and de Waal Malefyt, R. (2002). The role of interleukin-10 in autoimmune disease: systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Cytokine & growth factor reviews 13, 403-412.

Briere, F., Bridon, J.M., Chevet, D., Souillet, G., Bienvenu, F., Guret, C., Martinez-Valdez, H., and Banchereau, J. (1994). Interleukin 10 induces B lymphocytes from IgA-deficient patients to secrete IgA. The Journal of clinical investigation 94, 97-104.

Burns, J.C., and Glode, M.P. (2004). Kawasaki syndrome. Lancet 364, 533-544.

Burns, J.C., Shike, H., Gordon, J.B., Malhotra, A., Schoenwetter, M., and Kawasaki, T. (1996). Sequelae of Kawasaki disease in adolescents and young adults. Journal of the American College of Cardiology 28, 253-257.

Burns, J.C., Shimizu, C., Shike, H., Newburger, J.W., Sundel, R.P., Baker, A.L., Matsubara, T., Ishikawa, Y., Brophy, V.A., Cheng, S., et al. (2005). Family-based association analysis implicates IL-4 in susceptibility to Kawasaki disease. Genes and immunity 6, 438-444.

Chang, Y.H., Huang, C.N., Wu, C.Y., and Shiau, M.Y. (2005). Association of interleukin-10 A-592C and T-819C polymorphisms with type 2 diabetes mellitus. Hum Immunol 66, 1258-1263.

Chen, T.Y., Hsieh, Y.S., Wu, T.T., Yang, S.F., Wu, C.J., Tsay, G.J., and Chiou, H.L. (2007). Impact of serum levels and gene polymorphism of cytokines on chronic hepatitis C infection. Transl Res 150, 116-121.

Chou, H.T., Tsai, C.H., Chen, W.C., and Tsai, F.J. (2005). Lack of association of genetic polymorphisms in the interleukin-1beta, interleukin-1 receptor antagonist, interleukin-4, and interleukin-10 genes with risk of rheumatic heart disease in Taiwan Chinese. International heart journal 46, 397-406.

Chuang, C.H., Hsiao, M.H., Chiu, C.H., Huang, Y.C., and Lin, T.Y. (2006). Kawasaki disease in infants three months of age or younger. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi 39, 387-391.

Crawley, E., Kay, R., Sillibourne, J., Patel, P., Hutchinson, I., and Woo, P. (1999). Polymorphic haplotypes of the interleukin-10 5' flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis and rheumatism 42, 1101-1108.

de Waal Malefyt, R., Haanen, J., Spits, H., Roncarolo, M.G., te Velde, A., Figdor, C., Johnson, K., Kastelein, R., Yssel, H., and de Vries, J.E. (1991). Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. The Journal of experimental medicine 174, 915-924.

Ding, L., and Shevach, E.M. (1992). IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J Immunol 148, 3133-3139.

Dokka, S., Shi, X., Leonard, S., Wang, L., Castranova, V., and Rojanasakul, Y. (2001). Interleukin-10-mediated inhibition of free radical generation in macrophages. American journal of physiology 280, L1196-1202.

Edwards-Smith, C.J., Jonsson, J.R., Purdie, D.M., Bansal, A., Shorthouse, C., and Powell, E.E. (1999). Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology (Baltimore, Md 30, 526-530.

Embil, J.A., McFarlane, E.S., Murphy, D.M., Krause, V.W., and Stewart, H.B. (1985). Adenovirus type 2 isolated from a patient with fatal Kawasaki disease. Canadian Medical Association journal 132, 1400.

Eskdale, J., Keijsers, V., Huizinga, T., and Gallagher, G. (1999). Microsatellite alleles and single nucleotide polymorphisms (SNP) combine to form four major haplotype families at the human interleukin-10 (IL-10) locus. Genes and immunity 1, 151-155.

Eskdale, J., Kube, D., Tesch, H., and Gallagher, G. (1997). Mapping of the human IL10 gene and further characterization of the 5' flanking sequence. Immunogenetics 46, 120-128.

Fiorentino, D.F., Zlotnik, A., Vieira, P., Mosmann, T.R., Howard, M., Moore, K.W., and O'Garra, A. (1991). IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146, 3444-3451.

Fujita, Y., Nakamura, Y., Sakata, K., Hara, N., Kobayashi, M., Nagai, M., Yanagawa, H., and Kawasaki, T. (1989). Kawasaki disease in families. Pediatrics 84, 666-669.

Hagiwara, K., Komura, H., Kishi, F., Kaji, T., and Yoshida, T. (1992). Isolation of human herpesvirus-6 from an infant with Kawasaki disease. European journal of pediatrics 151, 867-868.

Heeschen, C., Dimmeler, S., Hamm, C.W., Fichtlscherer, S., Boersma, E., Simoons, M.L., and Zeiher, A.M. (2003). Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes. Circulation 107, 2109-2114.

Hirao, J., Hibi, S., Andoh, T., and Ichimura, T. (1997). High levels of circulating interleukin-4 and interleukin-10 in Kawasaki disease. Int Arch Allergy Immunol 112, 152-156.

Hoffmann, S.C., Stanley, E.M., Darrin Cox, E., Craighead, N., DiMercurio, B.S., Koziol, D.E., Harlan, D.M., Kirk, A.D., and Blair, P.J. (2001). Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation 72, 1444-1450.

Holm, J.M., Hansen, L.K., and Oxhoj, H. (1995). Kawasaki disease associated with parvovirus B19 infection. European journal of pediatrics 154, 633-634.

Hsu, D.H., Moore, K.W., and Spits, H. (1992). Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine-activated killer activity. International immunology 4, 563-569.

Hsueh, K.C., Lin, Y.J., Chang, J.S., Wan, L., Tsai, Y.H., Tsai, C.H., Chen, C.P., and Tsai, F.J. (2009). Association of interleukin-10 A-592C polymorphism in Taiwanese children with Kawasaki disease. Journal of Korean medical science 24, 438-442.

Huang, W.C., Huang, L.M., Chang, I.S., Chang, L.Y., Chiang, B.L., Chen, P.J., Wu, M.H., Lue, H.C., and Lee, C.Y. (2009). Epidemiologic features of Kawasaki disease in Taiwan, 2003-2006. Pediatrics 123, e401-405.

Hui-Yuen, J.S., Duong, T.T., and Yeung, R.S. (2006). TNF-alpha is necessary for induction of coronary artery inflammation and aneurysm formation in an animal model of Kawasaki disease. J Immunol 176, 6294-6301.

Itoh, K., and Hirohata, S. (1995). The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol 154, 4341-4350.

Jin, H.S., Kim, H.B., Kim, B.S., Lee, J.K., Seo, E.J., Yoo, H.W., Park, I.S., Hong, Y.M., and Hong, S.J. (2007). The IL-10 (-627 A/C) promoter polymorphism may be associated with coronary aneurysms and low serum albumin in Korean children with Kawasaki disease. Pediatric research 61, 584-587.

Johnson, D., and Azimi, P. (1985). Kawasaki disease associated with Klebsiella pneumoniae bacteremia and parainfluenza type 3 virus infection. Pediatric infectious disease 4, 100.

Kanegane, H., Tsuji, T., Seki, H., Yachie, A., Yokoi, T., Miyawaki, T., and Taniguchi, N. (1994). Kawasaki disease with a concomitant primary Epstein-Barr virus infection. Acta paediatrica Japonica; Overseas edition 36, 713-716.

Kim, D.S., Lee, H.K., Noh, G.W., Lee, S.I., and Lee, K.Y. (1996). Increased serum interleukin-10 level in Kawasaki disease. Yonsei medical journal 37, 125-130.

Koss, K., Satsangi, J., Fanning, G.C., Welsh, K.I., and Jewell, D.P. (2000). Cytokine (TNF alpha, LT alpha and IL-10) polymorphisms in inflammatory bowel diseases and normal controls: differential effects on production and allele frequencies. Genes and immunity 1, 185-190.

Kube, D., Platzer, C., von Knethen, A., Straub, H., Bohlen, H., Hafner, M., and Tesch, H. (1995). Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 7, 1-7.

Kuijpers, T.W., Herweijer, T.J., Scholvinck, L., Wertheim-Van Dillen, P.M., and Van De Veer, E.M. (2000). Kawasaki disease associated with measles virus infection in a monozygotic twin. Pediatr Infect Dis J 19, 350-353.

Lee, D.H., and Huang, H.P. (2004). Kawasaki disease associated with chickenpox: report of two sibling cases. Acta paediatrica Taiwanica = Taiwan er ke yi xue hui za zhi 45, 94-96.

Leung, D.Y., and Meissner, H.C. (2000). The many faces of Kawasaki syndrome. Hosp Pract (Minneap) 35, 77-81, 85-76, 91-74.

Levy, Y., and Brouet, J.C. (1994). Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl-2 protein. The Journal of clinical investigation 93, 424-428.

Mallat, Z., Heymes, C., Ohan, J., Faggin, E., Leseche, G., and Tedgui, A. (1999). Expression of interleukin-10 in advanced human atherosclerotic plaques: relation to inducible nitric oxide synthase expression and cell death. Arteriosclerosis, thrombosis, and vascular biology 19, 611-616.

Matsuno, S., Utagawa, E., and Sugiura, A. (1983). Association of rotavirus infection with Kawasaki syndrome. The Journal of infectious diseases 148, 177.

Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual review of immunology 19, 683-765.

Mosmann, T.R. (1994). Properties and functions of interleukin-10. Advances in immunology 56, 1-26.

Muniain-Ezcurra, M., Bueno-Mariscal, C., Rodriguez-Bano, J., Dominguez-Castellano, A., Balonga-Tomas, B., Rios-Villegas, M.J., Borobio-Enciso, M.V., and Perez-Cano, R. (1998). Kawasaki disease and parvovirus B19 infection in an adult HIV-1-infected patient. Clin Microbiol Infect 4, 609-610.

Newburger, J.W., and Fulton, D.R. (2004). Kawasaki disease. Current opinion in pediatrics 16, 508-514.

Newburger, J.W., Takahashi, M., Gerber, M.A., Gewitz, M.H., Tani, L.Y., Burns, J.C., Shulman, S.T., Bolger, A.F., Ferrieri, P., Baltimore, R.S., et al. (2004a). Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 110, 2747-2771.

Newburger, J.W., Takahashi, M., Gerber, M.A., Gewitz, M.H., Tani, L.Y., Burns, J.C., Shulman, S.T., Bolger, A.F., Ferrieri, P., Baltimore, R.S., et al. (2004b). Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114, 1708-1733.

Noh, G.W., Lee, W.G., Lee, W., and Lee, K. (1998). Effects of intravenous immunoglobulin on plasma interleukin-10 levels in Kawasaki disease. Immunology letters 62, 19-24.

Normann, E., Naas, J., Gnarpe, J., Backman, H., and Gnarpe, H. (1999). Demonstration of Chlamydia pneumoniae in cardiovascular tissues from children with Kawasaki disease. Pediatr Infect Dis J 18, 72-73.

O'Garra, A., and Vieira, P. (2007). T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 7, 425-428.

Okada, Y., Shinohara, M., Kobayashi, T., Inoue, Y., Tomomasa, T., Kobayashi, T., and Morikawa, A. (2003). Effect of corticosteroids in addition to intravenous gamma globulin therapy on serum cytokine levels in the acute phase of Kawasaki disease in children. The Journal of pediatrics 143, 363-367.

Onouchi, Z., and Kawasaki, T. (1999). Overview of pharmacological treatment of Kawasaki disease. Drugs 58, 813-822.

Park, Y.W., Han, J.W., Park, I.S., Kim, C.H., Yun, Y.S., Cha, S.H., Ma, J.S., Lee, S.B., Kim, C.H., Lee, H.J., et al. (2005). Epidemiologic picture of Kawasaki disease in Korea, 2000-2002. Pediatr Int 47, 382-387.

Rousset, F., Garcia, E., Defrance, T., Peronne, C., Vezzio, N., Hsu, D.H., Kastelein, R., Moore, K.W., and Banchereau, J. (1992). Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 89, 1890-1893.

Rousset, F., Peyrol, S., Garcia, E., Vezzio, N., Andujar, M., Grimaud, J.A., and Banchereau, J. (1995). Long-term cultured CD40-activated B lymphocytes differentiate into plasma cells in response to IL-10 but not IL-4. International immunology 7, 1243-1253.

Rowley, A.H., Eckerley, C.A., Jack, H.M., Shulman, S.T., and Baker, S.C. (1997). IgA plasma cells in vascular tissue of patients with Kawasaki syndrome. J Immunol 159, 5946-5955.

Rowley, A.H., Shulman, S.T., Mask, C.A., Finn, L.S., Terai, M., Baker, S.C., Galliani, C.A., Takahashi, K., Naoe, S., Kalelkar, M.B., et al. (2000). IgA plasma cell infiltration of proximal respiratory tract, pancreas, kidney, and coronary artery in acute Kawasaki disease. The Journal of infectious diseases 182, 1183-1191.

Shin, H.D., Park, B.L., Kim, L.H., Jung, J.H., Kim, J.Y., Yoon, J.H., Kim, Y.J., and Lee, H.S. (2003). Interleukin 10 haplotype associated with increased risk of hepatocellular carcinoma. Human molecular genetics 12, 901-906.

Silva, A.A., Maeno, Y., Hashmi, A., Smallhorn, J.F., Silverman, E.D., and McCrindle, B.W. (2001). Cardiovascular risk factors after Kawasaki disease: a case-control study. J Pediatr 138, 400-405.

Slager, S.L., and Schaid, D.J. (2001). Case-control studies of genetic markers: power and sample size approximations for Armitage's test for trend. Hum Hered 52, 149-153.

Sohn, M.H., Hur, M.W., and Kim, D.S. (2001). Interleukin 6 gene promoter polymorphism is not associated with Kawasaki disease. Genes and immunity 2, 357-362.

Sopontammarak, S., and Pruekprasert, P. (2000). Concomitant dengue hemorrhagic fever with Kawasaki disease. The Southeast Asian journal of tropical medicine and public health 31, 190-192.

Suarez, A., Castro, P., Alonso, R., Mozo, L., and Gutierrez, C. (2003). Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with genetic polymorphisms. Transplantation 75, 711-717.

Suzuki, H., Noda, E., Miyawaki, M., Takeuchi, T., Uemura, S., and Koike, M. (2001). Serum levels of neutrophil activation cytokines in Kawasaki disease. Pediatr Int 43, 115-119.

Thackray, A.M., McKenzie, A.N., Klein, M.A., Lauder, A., and Bujdoso, R. (2004). Accelerated prion disease in the absence of interleukin-10. Journal of virology 78, 13697-13707.

Tseng, C.F., Fu, Y.C., Fu, L.S., Betau, H., and Chi, C.S. (2001). Clinical spectrum of Kawasaki disease in infants. Zhonghua Yi Xue Za Zhi (Taipei) 64, 168-173.

Turner, D.M., Williams, D.M., Sankaran, D., Lazarus, M., Sinnott, P.J., and Hutchinson, I.V. (1997). An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 24, 1-8.

Uehara, R., Yashiro, M., Nakamura, Y., and Yanagawa, H. (2003). Kawasaki disease in parents and children. Acta Paediatr 92, 694-697.

Wang, C.L., Wu, Y.T., Liu, C.A., Kuo, H.C., and Yang, K.D. (2005). Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J 24, 998-1004.

Wang, J.N., Wang, S.M., Liu, C.C., and Wu, J.M. (2001). Mycoplasma pneumoniae infection associated with Kawasaki disease. Acta Paediatr 90, 594-595.

Wann, E.R., Fehringer, A.P., Ezepchuk, Y.V., Schlievert, P.M., Bina, P., Reiser, R.F., Hook, M.M., and Leung, D.Y. (1999). Staphylococcus aureus isolates from patients with Kawasaki disease express high levels of protein A. Infection and immunity 67, 4737-4743.

Weber-Nordt, R.M., Riley, J.K., Greenlund, A.C., Moore, K.W., Darnell, J.E., and Schreiber, R.D. (1996). Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. The Journal of biological chemistry 271, 27954-27961.

Wehinger, J., Gouilleux, F., Groner, B., Finke, J., Mertelsmann, R., and Weber-Nordt, R.M. (1996). IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of selected genes. FEBS letters 394, 365-370.

Weiss, J.E., Eberhard, B.A., Chowdhury, D., and Gottlieb, B.S. (2004). Infliximab as a novel therapy for refractory Kawasaki disease. The Journal of rheumatology 31, 808-810.

Wu, S.F., Chang, J.S., Wan, L., Tsai, C.H., and Tsai, F.J. (2005). Association of IL-1Ra gene polymorphism, but no association of IL-1beta and IL-4 gene polymorphisms, with Kawasaki disease. Journal of clinical laboratory analysis 19, 99-102.

Yang, J., Li, C.R., Li, Y.B., Li, R.X., Sun, L.B., Huang, H.J., and Wang, G.B. (2003). The correlation between Kawasaki disease and polymorphisms of Tumor necrosis factor alpha and interleukin-10 gene promoter. Zhonghua er ke za zhi 41, 598-602.

Zheng, G., Freidlin, B., and Gastwirth, J.L. (2002). Robust TDT-type candidate-gene association tests. Annals of human genetics 66, 145-155.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.64.241
論文開放下載的時間是 校外不公開

Your IP address is 3.145.64.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code