Responsive image
博碩士論文 etd-0828109-202824 詳細資訊
Title page for etd-0828109-202824
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於環境樣品中鉻與硒及穀物樣品中砷與硒型態分析之應用
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-30
繳交日期
Date of Submission
2009-08-28
關鍵字
Keywords
砷、鉻、硒、感應耦合電漿質譜儀、液相層析
chromium, arsenic, selenium, liquid chromatography, inductively coupled plasma mass spectrometry
統計
Statistics
本論文已被瀏覽 5653 次,被下載 26
The thesis/dissertation has been browsed 5653 times, has been downloaded 26 times.
中文摘要
微量元素與人體的健康密切相關,然而依據不同氧化數及化合物組成,其毒性程度也有所不同,因此除了對於元素總濃度進行偵測外,近年來對於型態及其含量的分析也日益受到重視,成為環境汙染或食品安全分析中迫切的一環,因此需要一個具有高選擇性和高靈敏度的分析方法。而液相層析(Liquid Chromatography,LC)結合感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectroscopy,ICP-MS)因具備靈敏度高、線性範圍廣、偵測極限低等優點之外,還可同時進行多元素偵測,目前已被廣泛地應用於元素型態分析上。
本研究第一部份是以液相層析結合感應耦合電漿質譜儀對環境水樣中的Cr(III)、Cr(VI)、Se(IV)及Se(VI)進行型態分析。在層析分離方面,實驗中使用EDTA作為螫合試劑,再添加離子對試劑Tetra-n-butylammonium phosphate(TBAP)。分離條件最適化的探討,包含了EDTA、甲醇濃度、及動相流速,以期能在 C-8逆相管柱中進行快速且有效的分離。另外由於Ar2+及動相中有機物成份所形成的ArC+等多原子離子,會對硒與鉻造成同質量干擾,使背景上升,為能有更靈敏準確的分析結果,故配合使用動態反應管系統(Dynamic Reaction Cell,DRC )以減輕此類干擾。而實驗條件最適化後,四種分析物可在200秒內快速達成分離,相關係數平方都為0.9987以上,Cr(III)、Cr(VI)的偵測極限分別為0.10、0.11 ng mL-1, Se(IV)及Se(VI)則為0.05 ng mL-1,定量分析環境水樣中鉻與硒型態之含量,回收率介於92-105%之間。
第二部份是以液相層析結合感應耦合電漿質譜儀分析穀物樣品中砷與硒型態之含量。本實驗以陰離子交換層析,藉由梯度沖提的方式,同時分離四種砷As(III)、As(V)、Monomethylarsonic acid(MMA)及Dimethylarsinic acid(DMA)和五種硒Se (IV)、Se (VI)、Seleno- methionine (SeMet) 、Selenocystine ((SeCys)2)及Se-Methylseleno- cysteine(Se-MeSeCys)。但由於Ar2+及穀物樣品中的氯所形成的ArCl+,會分別對硒和砷的偵測造成同質量干擾,因此希望使用動態反應管系統以降低此類干擾。探討層析之最適化分離條件,包括動相組成及動相A、B切換時間對層析分離結果之影響。而動態反應管系統的最適化探討,則比較甲烷和氫氣兩種反應氣體,預估偵測極限以甲烷較低,故最後選擇甲烷作為反應氣體。實驗條件最適化後,九種分析物可在10分鐘內完成分離,相關係數平方均為0.9980以上,偵測極限除了SeMet為0.03 ng mL-1外,其餘砷硒物種皆低於0.01 ng mL-1。另外本實驗以酵素水解(enzymatic hydrolysis)結合微波輔助萃取(micro- wave-assisted extraction,MAE)的方式,同時使用澱粉酶(α-Amylase)和蛋白酶(Protease Type XIV),以溫控方式在70℃下維持30分鐘,萃取稻米及麵粉樣品中的砷及硒物種,並以建立起的最適化條件將萃取液注入LC-DRC-ICP-MS中進行分離和定量。測定回收率方面,在樣品萃取前添加適量的砷及硒物種濃度,所計算之回收率介於94-105%之間。
Abstract
none
目次 Table of Contents
摘要 I
目錄 IV
圖表目錄 VII

第一章 動態反應管基本原理介紹
壹、原理 1
貳、參考文獻 5
第二章 液相層析結合動態反應管感應耦合電漿質譜儀於環境水樣中鉻與硒物種分析之應用
壹、前言 6
貳、實驗部份 9
一、儀器裝置 9
二、試劑藥品及溶液的配製 11
參、實驗過程: 14
一、液相層析條件最適化探討 14
二、DRC-ICP-MS系統最適化探討 14
三、再現性 17
四、校正曲線與偵測極限 17
五、真實樣品分析 18
肆、結果與討論 19
一、液相層析條件最適化探討 19
二、DRC-ICP-MS系統最適化探討 27
三、再現性 35
四、校正曲線與偵測極限 39
五、真實樣品分析 39
伍、結論 47
陸、參考文獻 48
第三章 液相層析結合動態反應管感應耦合電漿質譜儀於穀物樣品中砷及硒物種分析之應用
壹、 前言 51
貳、實驗部份 54
一、儀器裝置 54
二、 試劑藥品、溶液及樣品的配製 56
參、實驗過程: 64
一、液相層析條件最適化探討 64
二、DRC-ICP-MS系統最適化探討 64
三、再現性 66
四、校正曲線與偵測極限的估計 66
五、萃取條件最適化 67
六、真實樣品分析 68
肆、結果與討論 73
一、液相層析條件最適化探討 73
二、DRC-ICP-MS系統最適化探討 84
三、再現性 97
四、校正曲線與偵測極限的估計 97
五、萃取條件最適化 97
六、真實樣品分析 100
伍、結論 112
陸、參考文獻 113
第一章
圖1-1 DRC-ICP-MS儀器示意圖 4

第二章
圖2-1 LC-DRC-ICP-MS 之系統圖 10
圖2-2 EDTA及TBAP之結構式 15
圖2-3 動相中EDTA濃度對層析分離的影響 21
圖2-4 動相中MeOH濃度對層析分離的影響 22
圖2-5 動相流速對層析分離的影響 24
圖2-6最適化分離條件下,測定Cr(III)、Cr(VI)、Se(IV)、Se(VI) 及Cl-之層析圖 28
圖2-7 反應氣體CH4流速對鉻分析物及背景訊號的影響 29
圖2-8 反應氣體CH4流速對硒分析物及背景訊號的影響 30
圖2-9 反應氣體CH4流速對預估偵測極限值(EDL)的影響 32
圖2-10改變Rpq值對預估偵測極限值(EDL)的影響 33
圖2-11 改變AFV對52Cr和80Se訊號之影響 34
圖2-12 鉻與硒物種在不同m/z下之層析圖 37
圖2-13 澄清湖湖水之層析圖 42
圖2-14蓮池潭潭水之層析圖 43
圖2-15河水標準參考樣品SLRS-4 River Water稀釋2倍之層析圖 45
表2-1 以ICP-MS 分析鉻及硒時常見之光譜干擾 16
表2-2 動相流速對分析物S/B之影響 25
表2-3分析物在液相層析儀系統之最適化分離條件 26
表2-4 DRC-ICP-MS系統操作條件 36
表2-5 以LC-DRC-ICP-MS測定鉻及硒物種之滯留時間與分析訊號再現性 38
表2-6 以LC-DRC-ICP-MS測定鉻及硒物種之校正曲線及偵測極限 40
表2-7 鉻及硒物種偵測極限之比較 41
表2-8 以LC-DRC-ICP-MS及DRC-ICP-MS測定水樣中鉻及硒物種之結果 46
第三章
圖3-1 LC-DRC-ICP-MS 之系統圖 55
圖3-2 砷物種之結構式 60
圖3-3 硒物種之結構式 61
圖3-4 食米及麵粉樣品萃取流程圖 69
圖3-5改變動相A的pH值對層析結果的影響 74
圖3-6改變動相B的pH值對層析結果的影響 76
圖3-7改變動相A、B切換時間對層析結果的影響 77
圖3-8 改變動相B中ammonium citrate濃度對層析結果的影響 78
圖3-9 改變甲醇濃度濃度對層析結果的影響 80
圖3-10 改變動相A中ammonium citrate濃度對層析結果的影響 81
圖3-11 在最適化分離條件下測定砷和硒物種及Cl-之層析圖 85
圖3-12 以CH4為反應氣體,改變氣體流速對砷分析物及背景訊號的影響 86
圖3-13 以CH4為反應氣體,改變氣體流速對硒分析物及背景訊號的影響 87
圖3-14 以H2為反應氣體,改變氣體流速對砷分析物及背景訊號的影響 88
圖3-15 以H2為反應氣體,改變氣體流速對硒分析物及背景訊號的影響 89
圖3-16 分別以(a) CH4 ; (b) H2為反應氣體,改變氣體流速所得之預估偵測極限 91
圖3-17以CH4為反應氣體,設定氣體流速為1.0 mL min-1,改變Rpq值對預估偵測極限值(EDL)的影響 92
圖3-18以CH4為反應氣體,設定氣體流速為1.0 mL min-1, Rpq值為0.45,改變AFV對砷及硒分析物和背景訊號之影響 93
圖3-19 砷與硒物種在不同m/z下之層析圖 96
圖3-20 以不同溫度萃取市售食米樣品中砷及硒之相對訊號 101
圖3-21 不同萃取時間下,市售食米樣品中砷及硒之相對訊號 102
圖3-22 標準參考樣品 SRM 1568a Rice Flour 萃取後所得砷和硒物種之層析圖 105
圖3-23食米樣品萃取後所得砷和硒物種之層析圖 106
圖3-24糙米樣品萃取後所得砷和硒物種之層析圖 107
圖3-25標準參考樣品 SRM 1567a Wheat Flour萃取後所得砷和硒物種之層析圖 109
圖3-26 低筋麵粉樣品萃取後所得砷和硒物種之層析圖 110
表3-1 砷及硒物種和citric acid之化學式和解離常數pKa值 59
表3-2 以ICP-MS 分析砷及硒時常見之光譜干擾 65
表3-3 微波消化步驟設定條件 70
表3-4 分析物在液相層析系統之最適化分離條件 83
表3-5 DRC-ICP-MS系統操作條件 95
表3-6 以LC-DRC-ICP-MS測定砷及硒物種之滯留時間與分析訊號再現性 98
表3-7 以LC-DRC-ICP-MS測定砷及硒物種之校正曲線及偵測極限 99
表3-8 稻米、麵粉樣品經密閉式微波消化後以DRC-ICP-MS定量之結果 103
表3-9以LC-DRC-ICP-MS測定稻米樣品中砷及硒物種之含量 108
表3-10以LC-DRC-ICP-MS測定麵粉樣品中砷及硒物種之含量 111
參考文獻 References
1. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and
collision cells for ICP-MS: a tutorial review. Spectrochim. Acta, Part
B 2002, 57 (9), 1361-1452.
2. Scott D. Tanner; Baranov, V. I., A dynamic reaction cell for
inductively coupled plasma mass spectrometry (ICP-DRC-MS). II.
Reduction of interferences produced within the cell. J. Am. Soc.
Mass Spectrom. 1990, 10 (11), 1083-1094.
3. Bandura DR, B. V., Tanner SD Inductively coupled plasma mass
spectrometer with axial field in a quadrupole reaction cell. J. Am.
Soc. Mass Spectrom. 2002, 13 (10), 1176-1185.
1. Davis, C. M.; Vincent, J. B., Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 1997, 36 (15), 4382-4385.
2. Kotas, J.; Stasicka, Z., Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107 (3), 263-283.
3. Hsieh, C. Y.; Tsai, M. H.; Ryan, D. K.; Pancorbo, O. C., Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox (R) chronic toxicity test. Sci. Total Environ. 2004, 320 (1), 37-50.
4. Chen, X. S.; Yang, G. Q.; Chen, J. S.; Chen, X. C.; Wen, Z. M.; Ge, K. Y., Studies on the relations of selenium and keshan disease. Biol. Trace Elem. Res. 1980, 2 (2), 91-107.
5. Wei, W. Q.; Abnet, C. C.; Qiao, Y. L.; Dawsey, S. M.; Dong, Z. W.; Sun, X. D.; Fan, J. H.; Gunter, E. W.; Taylor, P. R.; Mark, S. D., Prospective study of serum selenium concentrations and esophageal and gastric cardia cancer, heart disease, stroke, and total death. Am. J. Clin. Nutr. 2004, 79 (1), 80-85.
6. Ali, I.; Aboul-Enein, H. Y., Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 2002, 48 (3), 275-278.
7. Martinez-Bravo, Y.; Roig-Navarro, A. F.; Lopez, F. J.; Hernandez, F., Multielemental determination of arsenic, selenium and chromium(VI) species in water by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2001, 926 (2), 265-274.
8. Chen, Z. L.; Megharaj, M.; Naidu, R., Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry. Talanta 2007, 72 (2), 394-400.
9. Bednar, A. J.; Kirgan, R. A.; Jones, W. T., Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS. Anal. Chim. Acta 2009, 632 (1), 27-34.
10. Castillo, A.; Roig-Navarro, A. F.; Pozo, O. J., Capabilities of microbore columns coupled to inductively coupled plasma mass spectrometry in speciation of arsenic and selenium. J. Chromatogr. A 2008, 1202 (2), 132-137.
11. Hagendorfer, H.; Goessler, W., Separation of chromium(III) and chromium(VI) by ion chromatography and an inductively coupled plasma mass spectrometer as element-selective detector. Talanta 2008, 76 (3), 656-661.
12. Chen, Z. L.; Wang, W. H.; Mallavarapu, M.; Naidu, R., Comparison of no gas and He/H2 cell modes used for reduction of isobaric interferences in selenium speciation by ion chromatography with inductively coupled plasma mass spectrometry. Spectrochim. Acta, Part B 2008, 63 (1), 69-75.
13. Chang, Y. L.; Jiang, S. J., Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (8), 858-862.
14. Kuo, C. Y.; Jiang, S. J.; Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22 (6), 636-641.
15. Lu, C. Y.; Yan, X. P., Capillary electrophoresis on-line coupled with hydride generation-atomic fluorescence spectrometry for speciation analysis of selenium. Electrophoresis 2005, 26 (1), 155-160.
16. Simon, S.; Barats, A.; Pannier, F.; Potin-Gautier, M., Development of an on-line UV decomposition system for direct coupling of liquid chromatography to atomic-fluorescence spectrometry for selenium speciation analysis. Anal. Bioanal. Chem. 2005, 383 (4), 562-569.

17. 賴珮珊, "感應耦合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種分析之應用", 民國九十三年六月.
18. 趙文賜, "感應耦合電漿質譜儀在錫及鉻物種分析之應用", 民國八十七年七月.
1. Qi, Y. Q.; Donahoe, R. J., The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci. Total Environ. 2008, 405 (1-3), 246-254.
2. Datta, R.; Sarkar, D.; Sharma, S.; Sand, K., Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: An incubation study. Sci. Total Environ. 2006, 372 (1), 39-48.
3. Chen, H. W., Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull. Environ. Contam. Toxicol. 2007, 78 (2), 113-117.
4. Vuyyuri, S. B.; Ishaq, M.; Kuppala, D.; Grover, P.; Ahuja, Y. R., Evaluation of micronucleus frequencies and DNA damage in glass workers exposed to arsenic. Environ. Mol. Mutagen. 2006, 47 (7), 562-570.
5. Lebow, S.; Foster, D.; Evans, J., Long-term soil accumulation of chromium, copper, and arsenic adjacent to preservative-treated wood. Bull. Environ. Contam. Toxicol. 2004, 72 (2), 225-232.
6. Brown, K. G.; Ross, G. L., Arsenic, drinking water, and health: A position paper of the American Council on Science and Health. Regul. Toxicol. Pharmacol. 2002, 36 (2), 162-174.
7. Polak, M.; Opoka, R.; Cartwright, I. L., Response of fluctuating asymmetry to arsenic toxicity: support for the developmental selection hypothesis. Environ. Pollut. 2002, 118 (1), 19-28.
8. Ratnaike, R. N., Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79 (933), 391-396.
9. Abernathy, C. O. T., D. J.; Calderon, R. L., Health effects and risk assessment of arsenic. J. Nutr. 2003, 133 (5), 1536-1538.
10. Tseng, C. H., Blackfoot disease and arsenic: A never-ending story. . Environ. Sci. Health Part. C-Environ. Carcinog. Ecotoxicol. Rev. 2005, 23 (1), 55-74.
11. Reyes, L. H.; Mar, J. L. G.; Rahman, G. M. M.; Seybert, B.; Fahrenholz, T.; Kingston, H. M. S., Simultaneous determination of arsenic and selenium species in fish tissues using microwave-assisted enzymatic extraction and ion chromatography-inductively coupled plasma mass spectrometry. Talanta 2009, 78 (3), 983-990.
12. Pizarro, I.; Gomez, M.; Camara, C.; Palacios, M. A., Arsenic speciation in environmental and biological samples - Extraction and stability studies. Anal. Chim. Acta 2003, 495 (1-2), 85-98.
13. Le, X. C.; Lu, X. F.; Li, X. F., Arsenic speciation. Anal. Chem. 2004, 76 (1), 26A-33A.
14. B'Hymer, C.; Caruso, J. A., Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J. Chromatogr. A 2006, 1114 (1), 1-20.
15. Combs, G. F., Status of selenium in prostate cancer prevention. Br. J. Cancer 2004, 91 (2), 195-199.
16. Gonzalez, S.; Huerta, J. M.; Alvarez-Uria, J.; Fernandez, S.; Patterson, A. M.; Lasheras, C., Serum selenium is associated with plasma homocysteine concentrations in elderly humans. J. Nutr. 2004, 134 (7), 1736-1740.
17. Afton, S.; Kubachka, K.; Catron, B.; Caruso, J. A., Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection Applications to river water, plant extract and urine matrices. J. Chromatogr. A 2008, 1208 (1-2), 156-163.
18. Iserte, L. O.; Roig-Navarro, A. F.; Hernandez, F., Simultaneous determination of arsenic and selenium species in phosphoric acid extracts of sediment samples by HPLC-ICP-MS. Anal. Chim. Acta 2004, 527 (1), 97-104.
19. Mar, J. L. G.; Reyes, L. H.; Rahman, G. A. M.; Kingston, H. M. S., Simultaneous Extraction of Arsenic and Selenium Species From Rice Products by Microwave-Assisted Enzymatic Extraction and Analysis by Ion Chromatography-inductively Coupled Plasma-Mass Spectrometry. J. Agric. Food Chem. 2009, 57 (8), 3005-3013.
20. Foster, S.; Maher, W.; Krikowa, F.; Apte, S., A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 2007, 71 (2), 537-549.
21. Sun, B. G. M., M.; Haddad, P. R., Speciation of arsenic and selenium by capillary electrophoresis. J. Chromatogr. A 2004, 1039 (1-2), 201-208.
22. Larsen, E. H.; Hansen, M.; Fan, T.; Vahl, M., Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J. Anal. At. Spectrom. 2001, 16 (12), 1403-1408.
23. Pedrero, Z.; Madrid, Y., Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal. Chim. Acta 2009, 634 (2), 135-152.
24. Kuo, C. Y.; Jiang, S. J., Determination of selenium and tellurium compounds in biological samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. J. Chromatogr. A 2008, 1181 (1-2), 60-66.
25. Narukawa, T.; Inagaki, K.; Kuroiwa, T.; Chiba, K., The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS. Talanta 2008, 77 (1), 427-432.
26. Garcia-Manyes, S.; Jimenez, G.; Padro, A.; Rubio, R.; Rauret, G., Arsenic speciation in contaminated soils. Talanta 2002, 58 (1), 97-109.
27. Larsen, E. H.; Engman, J.; Sloth, J. J.; Hansen, M.; Jorhem, L., Determination of inorganic arsenic in white fish using microwave-assisted alkaline alcoholic sample dissolution and HPLC-ICP-MS. Anal. Bioanal. Chem. 2005, 381 (2), 339-346.
28. N. Gilon, A. A., M. Astruc, M. Potin-Gautier Selenoamino acid speciation using HPLC-ETAAS following an enzymic hydrolysis of selenoprotein. Appl. Organomet. Chem. 1995, 9 (7), 623-628.
29. Wang, W. H.; Chen, Z. L.; Davey, D. E.; Naidu, R., Extraction of selenium species in pharmaceutical tablets using enzymatic and chemical methods. Microchim. Acta 2009, 165 (1-2), 167-172.
30. Huerta, V. D.; Reyes, L. H.; Marchante-Gayon, J. M.; Sanchez, M. L. F.; Sanz-Medel, A., Total determination and quantitative speciation analysis of selenium in yeast and wheat flour by isotope dilution analysis ICP-MS. J. Anal. At. Spectrom. 2003, 18 (10), 1243-1247.
31. Larsen, E. H.; Sturup, S., Carbon-enhanced Inductively Coupled Plasma Mass Spectrometric of Arsenic and Selenium and its Application to Arsenic speciation. J. Anal. At. Spectrom. 1994, 9 (10), 1099-1105.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.185.90
論文開放下載的時間是 校外不公開

Your IP address is 18.226.185.90
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code