Responsive image
博碩士論文 etd-0828111-194726 詳細資訊
Title page for etd-0828111-194726
論文名稱
Title
以硒化法製作CI(G)S薄膜太陽電池
Fabrication of CI(G)S Thin-film Solar Cell by Selenization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-27
繳交日期
Date of Submission
2011-08-28
關鍵字
Keywords
慢速硒化製程、二元硒化物、快速硒化製程、化學組成、CIGS、CIS、轉換效率
binary selenide, rapid selenization process, chemical composition, CIGS, CIS, slow selenization process, conversion efficiency
統計
Statistics
本論文已被瀏覽 5685 次,被下載 0
The thesis/dissertation has been browsed 5685 times, has been downloaded 0 times.
中文摘要
利用EPMA和TEM-EDS對定比組成的共蒸鍍製備的CIS薄膜進行成份分析,得到量測組成比例的標準差增加的結果,顯示出從微米到奈米不同尺度下化學組成比例浮動變劇烈的現象。
利用EPMA和TEM-EDS對以硒化法製備的CIS試片分析。也有微米到奈米尺度改變下化學組成比例浮動變大的現象。另外,比較不同硒化製程的EPMA量測結果;以二元硒化物疊層為前驅物接著進行快速硒化或慢速硒化製備CIS的EPMA量測之標準差都比單元素疊層為前驅物的快速硒化製備的CIS還小。
以二元硒化物前驅物疊藉由快速升溫進行硒化製程形成CIS,但是Mo薄膜殘留應力導致快速升溫時CIS薄膜破裂。將Mo厚度降低改善此情況,卻產生基板彎曲的現象。藉由調整升溫參數無法完全改善之。
以二元硒化物前驅物疊層,改在真空成長腔?奡ㄗ垶e蒸氣,進行慢速升溫硒化合成CIS。改變不同的Cu/In比例完成太陽電池元件均有光伏打效應。並以此法製備Cu/III族比例為0.92的CIGS(CuIn1-xGaxSe)薄膜。
Cu/In為0.92的元件在AM1.5下量測得到最高轉換效率可達9.29 %,開路電壓(Voc)0.398 V,短路電流密度(Jsc)41.14 mA/cm2,填充因子(FF) 54.58 %。CIGS元件最高轉換效率可達4.42 %,開路電壓0.461 V,短路電流密度22.23 mA/cm2,填充因子為41.53 %。結果顯示Ga的加入確實提升了開路電壓。
Abstract
Since the phase stability region of CuInSe2 (CIS) extends as wide as a few atomic percent, composition variation in a microscopic scale is nature to this material and can be detected by EPMA or TEM-EDS. As the detection volume is kept as small as possible (e.g. we used an electron probe with a diameter of 3nm to measure a TEM specimen thinned by a focused ion beam to a 80 nm thickness), the composition data fluctuate rather significantly. For a near-stoichiometric CIS film prepared by co-evaporation or a selenized film using binary selenides as precursor, the composition variations in a nanometer scale were quite distinct. Due to the tedious procedures for making TEM specimens and doing measurements, we normally used EPMA for the composition analysis. Although the composition was measured in a micrometer scale, its variation still can be detected and expressed by the standard deviation. Our results showed that the selenized films prepared by using binary selenides as precursors (they were used to make the device in this work) had much better composition uniformity as compared with the films selenized from the elemental precursors. We also found that even the time period for the selenization process was short (rapid thermal selenization) or long (conventional selenization), the composition variation did not make any changes.
Since there still has problems for making devices by using rapid thermal selenization, we successfully fabricated the CIS thin-film solar cells through the conventional selenization processes. The I-V characteristics of the best CIS cell is in the following: Voc=0.398 V, Jsc=41.14 mA/cm2, fill factor (FF)=54.58%, efficiency= 9.29%. We also made a CIGS cell and found that the open circuit voltage was increased to 0.461 V. However, the efficiency was 4.42%. It still needs more effort to boost its short circuit current and fill factor.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 viii
圖目錄 ix
一、簡介與文獻回顧 1
1.1 前言 1
1.2 CI(G)S材料發展背景與組成特性 2
1.3 共蒸鍍製程 6
1.4 硒化製程 7
1.5 太陽電池元件 14
1.5.1 太陽電池工作原理 14
1.5.2 CI(G)S太陽電池元件製程簡介 16
1.5.3 Mo電極層探討 18
1.6 實驗動機與目的 19
二、實驗製程方法與分析儀器介紹 21
2.1 實驗製程與原理 21
2.1.1 蒸鍍系統 21
2.1.2 三槍平行濺鍍系統 22
2.2 分析方法與儀器介紹 22
2.2.1 X-ray 繞射儀 22
2.2.2 掃描式電子顯微鏡 23
2.2.3 雙束型聚焦離子束 23
2.2.4 穿透式電子顯微鏡 23
2.2.5 電子微探儀 24
2.2.6 拉曼光譜儀 24
2.2.7 四點探針 25
2.2.8 反射光譜儀 25
2.2.9 I-V量測 25
三、實驗步驟與方法 26
3.1 太陽電池元件實驗製程 26
3.2 基板準備工作 26
3.3 鉬金屬(Mo)背電極製備 27
3.4 主吸收層鍍製 27
3.5 CdS薄膜鍍製 29
3.6 元件其他層薄膜鍍製 31
3.7 元件各層薄膜測試片 31
四、實驗結果與討論 32
4.1 化學組成分析 32
4.1.1 定比組成試片成份分析 32
4.1.2 硒化試片成份分析 36
4.1.3 成分分析結果與討論 40
4.2 快速硒化製程與元件製作 41
4.2.1 減少Mo背電極厚度製作元件結果 43
4.2.2 改變快速硒化升溫條件的實驗結果 47
4.2.3 CIS快速硒化製程討論 53
4.3 CIS慢速硒化製程與元件製作 56
4.3.1 CIS慢速硒化薄膜特性分析 57
4.3.2 不同組成比例CIS慢速硒化元件製作 58
4.4 CIGS慢速硒化製程與元件製作 63
4.5 慢速硒化製程討論 67
4.5.1 慢速硒化元件性質比較 67
4.5.2 製程不穩定性討論 68
五、結論 71
六、參考文獻 72
七、附錄 75

參考文獻 References
1. Miguel A. Contreras, Brian Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, Rommel Noufi, Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells. Prog. Photovolt. 7, 311-316 (1999)
2. Markus E. Beck, Amy Swartzlander-Guest, Rick Matson, James Keane, Rommel Noufi, CuIn(Ga)Se2-based devices via a novel absorber formation process Solar Energy Materials & Solar Cell 64 p.135-165 (2000)
3. Jet P., Vladimir A., Thin Film Solar Cells Fabrication Characterization and Application, New York: John Wiley & Son (2007)
4. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann, A. N. Tiwari, Development of Thin-film Cu(In,Ga)Se2 and CdTe Solar Cells, Prog. Photovolt: Res. Appl, 12 p.93-111 (2004)
5. C. H. Champness, Melt-grown CuInSe2 and photovolatic cells, Journal of Materials Science: Materials in Electronics 10 (1999) 605-622
6. L. L. Kazmerski, F. R. White,t and G. K. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett., 29(4), 268-270. (1976)
7. R.A. Mickelsen and Wen S. Chen, High photocurrent polycrystalline thin film CdS/CuInSe2 solar cell. Appl. Phys. Lett., 36(5), 371-373. (1980)
8. Antonio Luque., Steven Hegedus, Handbook of Photovotlaic Science and Engineering II, England: John Wiley & Son (2003)
9. R.D. Wieting, CIS manufacturing at the megawatt scale. 29th IEEE Photovolatic Specialists Conference, 478-483 (2002).
10. S. B. Zhang, Su-Huai Wei, and Alex Zunger, Defect physics of the CuInSe2 chalcopyrite semiconductor., Physical Review B, Volume 57, No 16, 15 April 1998-II
11. F. Abou-Elfotouh, D. J. Dunlavy and T.J. Coutts, Intrinsic defect states in CuInSe2 single crystals, Solar Cell Vol. 27 p.237-246 (1989)
12. Y. Yan, R. Noufi, K.M. Jones, K. Ramanathan, M. M. Al-Jassim and B. J. Stanbery, Chemical fluctuation-induced nanodomains in Cu(In,Ga)Se2 films, Applied Physics Letters 87, p.121904 (2005)
13. Yoshihiro Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications, New York: Springer (2004)
14. 何昱暘,CuInSe2薄膜快速硒化製程之改良研究,國立中山大學材料科學研究所碩士論文(2010)
15. Grindle S, Smith C, Mittleman S, Appl. Phys. Lett. 35(1), 24–26 (1979).
16. Chu T, Chu S, Lin S, Yue J, J. Electrochem. Soc. 131, 2182–2185 (1984).
17. M. Kaelin, D. Rudmann, A.N. Tiwari, Low cost processing of CIGS thin film solar cells, Solar Energy 77 749–756 (2004)
18. Sung Chan Park, Doo Youl Lee, Byung Tae Ahn ,Kyung Hoon Yoon, Jinsoo Song, Fabrication of CuInSe2 films and solar cells by the sequential evaporation of In2Se3and Cu2Se binary compounds, Solar Energy Materials & Solar Cells 69 99-105 (2001)
19. Karg F., Probst V., Harms H., Rimmasch J., Riedl W., Kotschy J., Holz J., Treichler R., Eibl O., Kiendl A novel rapid-thermal-processing for CIS thin-film solar cells 23th IEEE PVSC: 441, (1993).
20. Synthesis and characterization of CuInSe2 thin films from Cu, In and Se stacked layers using a closed graphite box, F.O. Adurodija , M.J. Carter, R. Hill, Solar Energy Materials and Solar Cells 40 359-369 (1996)
21. S. Yamanaka, M. Tanda, K. Horino, K. Ito, A. Yamada, M. Konagai and K. Takahashi, 21st IEEE Photovoltaic Specialists Conf., Las Vegas, , p. 758. (1990)
22. F.O. Adurodija, M.J. Carter and R. Hill, “A novel method of synthesizing P-CulnSe, thin films from the stacked elemental layers using a closed graphite box”, IEEE, (1994)
23. 簡唯倫,CuInSe2薄膜硒化製程之研究,國立中山大學材料科學研究所碩士論文(2008)
24. A.Brummer, V.Honkima¨ki, P.Berwian, V.Pr obst, J.Palm , R.Hock, “Formation of CuInSe2 by the annealing of stacked elemental layers—analysis by in situ high-energy powder diffraction”, Thin Solid Films 437 297–307 (2003)
25. W.K. Kim, E.A. Payzant, S. Yoon, T.J. Anderson, In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction, Journal of Crystal Growth 294 231–235 (2006)
26. Chakrabarti, D.J., Laughlin, D.E.: Bull., 1981, Alloy Phase Diagrams 2 305. (1981)
27. H. Okamoto, In-Se phase diagram, Journal of Phase Equilibria and Diffusion, , Vol. 25 No. 2 (2004)
28. T.J. Anderson, O.D. Crisalle, S.S. Li, and P.H. Holloway, Future CIS Manufacturing Technology Development Finial Report 8 July 1998-17 October, p.4-50-4-52 (2001)
29. 潘家叡,CuInSe2薄膜快速硒化製程之研究,國立中山大學材料科學研究所碩士論文 (2009)
30. 劉鈰誼,二元硒化合物預鍍層進行CIGS快速硒化製程之研究,國立中山大學材料科學研究所碩士論文 (2010)
31. John H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells, Thin Solid Films 260 p.26-31 ( 1995)
32. D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F.V. Kurdesau, A.N. Tiwari, M. Dfbeli, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells, Thin Solid Films 480–481 p.433– 438 (2005)
33. John A. Thornton, D. W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 171 5-31 (1989)
34. 田民波,薄膜技術與薄膜材料,台北市: 五南圖書出版社(2007)
35. 張振昌,化學水浴沉積法成長硫化鎘薄膜之研究,國立中山大學材料科學研究所碩士論文 (2005)
36. H. Moualkia, S. Hariech, M.S. Aida, Structural and optical properties of CdS thin films grown by chemical bath deposition, Thin Solid Films 518 1259–1262 (2009)
37. D.J. Yang and B.H. Tseng, 1998, "A Photoluminescence Study of an MBE-grown CuInSe2 Film with a Near-stoichiometric Composition", Institute of Physics Conference Series, Vol. 152, pp. 305-308 (1998)
38. Yukiko Kamikawa-Shimizu, Shuuhei Shimada, Manabu Watanabe, Akimasa Yamad, Keiichiro Sakurai, Shogo Ishizuka, Hironori Komaki, Koji Matsubara, Hajime Shibata, Hitoshi Tampo, Keigou Maejima, and Shigeru Niki, Effects of Mo back contact thickness on the properties of CIGS solar cells Phys. Status Solidi A 206, No. 5, 1063–1066 (2009)
39. M. Lammer, U. Klemm, M. Powalla, Sodium co-evaporation for low temperature Cu(In,Ga)Se2 deposition, Thin Solid Films 387 3336 (2001).
40. F. Kessler, D. Herrmann, M. Powalla, Approaches to flexible CIGS thin-film solar cells, Thin Solid Films 480–48 491– 4981 (2005)
41. V. Probsta,, W. Stetter , W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K.-D. Ufert, B. Freienstein, H. Cerva, F.H. Karg, Rapid CIS-process for high efficiency PV-modules: development towards large area processing, Thin Solid Films 387 262267 (2001).
42. R. W. BirkmireI, L. C. Dinetta, P. G. Lasswell, J. D. Meakin and J. E. Phillips, High Efficiency CuInSe2 Based Heterojunction solar cells: fabrication and results Solar Cells, 16 419 - 427. (1986)
43. Y. Tanaka, N. Akema, T. Morishita, D. Okumura, K. Kushiya, Proceedings of the 17th EC Photovoltaic Solar Energy Conference, p2. 989 (2001)
44. M. Marudachalam, R. W. Birkmire, and H. Hichri, J. M. Schultz, A. Swartzlander and M. M. Al-Jassim, Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films, J. Appl. Phys. 82 (6), p2896-2905 (1997)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.184.237
論文開放下載的時間是 校外不公開

Your IP address is 18.118.184.237
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code