Responsive image
博碩士論文 etd-0828111-204443 詳細資訊
Title page for etd-0828111-204443
論文名稱
Title
以水溶液沉積法製備氧化鋅奈米針及奈米柱於二氧化鈦異質接面氣體感測器
Zinc Oxide Nanotip and Nanorod on Titanium Oxide Heterojunction Gas Sensor Prepared by Aqueous Solution Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-22
繳交日期
Date of Submission
2011-08-28
關鍵字
Keywords
水溶液沉積法、氧化鋅、奈米針、奈米柱、異質接面、氣體感測器
gas sensor, heterojunction, nanorod, nanotip, zinc oxide (ZnO), aqueous solution deposition (ASD)
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
在本篇研究論文中,我們在玻璃基板上生長氧化鋅奈米針以及奈米柱,並對其做了相關的物性光性化性等特性分析。從各特性分析,我們可以看出生長的氧化鋅奈米針及奈米柱皆有相似的趨勢,尤其在光致螢光(PL)的分析可以看出,峰值的位置(約位於409nm)較文獻常見的位置(375nm)紅移了約35nm,推測為奈米針及奈米柱的缺陷過多而造成。接著我們將生長後的奈米針及奈米柱於上方蒸鍍上銦鋅合金指叉式電極製成氣體感測器並對其做電流對時間的量測以觀測其光響應,發現其光響應隨著在笑氣下回火而有提高。為了減少電子電洞對復合機率,我們在氧化鋅奈米針及奈米柱底層長上一層二氧化鈦薄膜,形成ZnO nanotip/TiO2 film和ZnO nanorod/TiO2 film的異質接面結構,而後將其製成氣體感測器並做光響應的量測,發現奈米針及奈米柱兩者在光響應部分皆有明顯提升。最後我們可以得到氧化鋅奈米針長在二氧化鈦薄膜上的氣體感測器之光響應有22.85,上升時間40秒,下降時間82秒;氧化鋅奈米柱長在二氧化鈦薄膜上的氣體感測器之光響應有27.44,上升時間22秒,下降時間133秒。
Abstract
In this study, zinc oxide (ZnO) nanotip and nanorod were grown on glass substrate by aqueous solution deposition (ASD). Both characteristics of the two nanostructures were investigated. For fabrication of ZnO nanostructure UV photodetector, In-Zn inter-digitated metal electrode was evaporated on the top of the grown ZnO nanostructure to form the contact via. Compared with the common value (375 nm), both the peaks from the PL spectra of ZnO nanotip and nanorod are red-shifted (409 nm) due to the massive defects in nanotip and nanorod. In order to improve the photosensiblity, heterojunction of ZnO nanostructure/TiO2 film was prepared and were made into UV photodetector. Photoresponses of both nanotip and nanorod were improved after N2O annealing at 300oC. With the heterojunction of ZnO 1D nanostructure on TiO2 film, the photoresponses of both ZnO nanotip/TiO2 film can reach to 22.85, and the rise time and decay time are 40 and 82 seconds, respectively. On the other side, the photoresponses of both ZnO nanorod/TiO2 film can reach to 27.44, and the rise time and decay time are 22 and 133 seconds, respectively.
目次 Table of Contents
ACKNOWLEDGEMENT ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 …………………………………………………………………………...1
Introduction 1
1.1 Properties of ZnO one-dimensional nanostructures 1
1.2 ZnO-based gas sensor 2
1.3 Growth methods for ZnO one-dimensional nanostructures 5
1.4 Advantages of aqueous solution deposition (ASD) 6
1.5 Motivation 6
References 12
Chapter 2 15
Experiments 15
2.1 Substrate cleaning 15
2.2 RF sputtering for ZnO nucleation 15
2.3 ASD of ZnO nanotip and nanorod 16
2.3.1 Deposition process 16
2.3.2 Basic mechanism 17
2.4 Structure of ZnO 1D nanostructure gas sensor 19
2.5 ZnO 1D nanostructure/TiO2 film gas sensor 20
2.5.1 ASD-TiO2 film 20
2.5.2 Structure of ZnO 1D nanostructure/TiO2 film gas sensor 21
2.6 Characterization 21
2.6.1 Physical properties 21
2.6.2 Chemical properties 23
2.6.3 Optical properties 23
2.6.4 Electrical properties of gas sensor 25
References 33
Chapter 3 34
Results and Discussion 34
3.1 Physical properties of ZnO nanotip and nanorod 34
3.1.1 ZnO nanotip 34
3.1.1 ZnO nanotip 34
3.1.2 ZnO nanorod 34
Chemical properties of ZnO nanotip and nanorod 35
3.3 Optical properties of ZnO nanotip and nanorod 35
3.4 Electrical properties of gas sensor 36
3.4.1 Photoreponse of ZnO nanotip and nanorod gas sensor 36
3.4.2 Photoreponse of ZnO nanotip and nanorod on TiO2 film heterojunction gas sensor 37
References 59
Chapter 4 60
Conclusions 60

參考文獻 References
Chapter 1:
[1] S. J. Pearton, D. P. Nortona, K. Ip, Y. W. Heo and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in Materials Science, Vol. 50, Issue 3, March 2005, pp. 293-340.
[2] Wikipedia http://en.wikipedia.org/wiki/File:Wurtzite_polyhedra.png
[3] Y. S. Wang, P. John Thomas, and P. O'Brien, J. Phys. Chem. B, 2006, 110 (43), pp 21412–21415.
[4] Tadatsugu Minami, Hirotoshi Sato, Hidehito Nanto and Shinzo Takata, "Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering," Jpn. J. Appl. Phys. 24 (1985) pp. L781-L784.
[5] Wei-Shan Wang, Tsung-Tsong Wu, Tai-Hsu Chou and Yung-Yu Chen, "A ZnO nanorod-based SAW oscillator system for ultraviolet detection," Nanotechnology 20 (2009) 135503.
[6] Michael A. Mastro, Lena Mazeina, Byung-Jae Kim, Sharka M. Prokes, Jennifer Hite, Charles R. Eddy Jr. and Jihyun Kim, "Vertical zinc oxide nanowires embedded in self-assembled photonic crystal," Photonics and Nanostructures - Fundamentals and Applications Vol. 9, Issue 1, February 2011, Pages 91-94.
[7] Min-Yeol Choi, Dukhyun Choi, Mi-Jin Jin, Insoo Kim, Sang-Hyeob Kim, Jae-Young Choi, Sang Yoon Lee, Jong Min Kim, Sang-Woo Kim, "Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods," Advanced Materials, Vol. 21, Issue 21, pp. 2185–2189, June 5, 2009.
[8] Xue-lian Bai, Nan Pan, Xiao-ping Wang and Hai-qian Wang, "Synthesis and Photocatalytic Activity of One-dimensional ZnO-Zn2SnO4 Mixed Oxide Nanowires," Chinese J. Chem. Phys., Vol. 21 No. 1.
[9] Hanhong Chen, Aurelien Du Pasquier, Gaurav Saraf, Jian Zhong and Yicheng Lu, "Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films," Semicond. Sci. Technol. 23 (2008) 045004 (6pp).
[10] Jiming Bao, Mariano A. Zimmler, Federico Capasso, Xiaowei Wang and Z. F. Ren, "Broadband ZnO Single-Nanowire Light-Emitting Diode," Nano Lett., 2006, 6 (8), pp 1719–1722.
[11] Yanfeng Zhang, Richard E. Russo, and Samuel S. Mao, "Quantum efficiency of ZnO nanowire nanolasers," Appl. Phys. Lett., vol. 87, 043106 2005.
[12] Monroy, E.; Calle, F.; Pau, J.L.; Munoz, E.; Omnes, F.; Beaumont, B.; Gibart, P. “AlGaN-Based UV Photodetectors,” J. Cryst. Growth 2001, 230, 537-543.
[13] Munoz, E.; Monroy, E.; Pau, J.L.; Calle, F.; Omnes, F.; Gibart, P. “III Nitrides and UV Detection,” J. Phys.: Condens. Matter 2001, 13, 7115-7137.
[14] Kewei Liu, Makoto Sakurai and Masakazu Aono, "ZnO-Based Ultraviolet Photodetectors," Sensors 2010, 10(9), pp. 8604-8634.
[15] Mollow, E. “Proceedings of the Photoconductivity Conference,” Breckenridge, R.G., Ed.; Wiley, New York, NY, USA, 1954; p. 509.
[16] Fabricius, H.; Skettrup, T.; Bisgaard, P. “Ultraviolet Detectors in Thin Sputtered ZnO Films,” Appl. Opt. 1986, 25, pp. 2764-2767.
[17] Yasutaka Takahashi, Masaaki Kanamori, Akiko Kondoh, Hideki Minoura and Yutaka Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films,” Jpn. J. Appl. Phys. Vol. 33 (1994) pp. 6611-6615.
[18] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, "Nanowire Ultraviolet Photodetectors and Optical Switches," Adv. Mater. 14 (2002) pp. 158-160.
[19] Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, "Electronic transport through individual ZnO nanowires," Appl. Phys. Lett. 84, 4556 (2004).
[20] Y. Li, X. Dong, C. Cheng, X. Zhou, P. Zhang, J. Gao, H. Zhang, "Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet," Physica B: Condensed Matter Vol. 404, Issue 21, 15 Nov. 2009, pp. 4282-4285.
[21] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., 2007, 7 (4), pp. 1003–1009.
[22] Bube, R. H. Photoelectronic Properties of Semiconductors; Cambridge University Press: Cambridge (1992).
[23] Rose, A. Concepts in Photoconductivity and Allied Problems; Interscience Publishers: New York (1963).
[24] J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, "Photoconductive Characteristics of Single-Crystal CdS Nanoribbons," Nano Lett., 2006, 6 (9), pp. 1887–1892.
[25] Liang Li, Shusheng Pan, Xincun Dou, Yonggang Zhu, Xiaohu Huang, Youwen Yang, Liang Li,* Shusheng Pan, Xincun Dou, Yonggang Zhu, Xiaohu Huang, Youwen Yang, "Direct Electrodeposition of ZnO Nanotube Arrays in Anodic Alumina Membranes," J. Phys. Chem. C 2007, 111, pp. 7288-7291.
[26] Y. Li, G.S. Cheng, and L.D. Zhang, "Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes," J. Mater. Res., vol. 15, No. 11, Nov 2000.
[27] Q X Zhao, P Klason, M Willander, "Growth of ZnO nanostructures by vapor liquid solid method," Appl. Phys. A Mater. Science Processing (2007) vol. 88, pp. 27-30.
[28] A. Soudi, R. Lopez, Jr., R. D. Dawson, and Y. Gu, "Anharmonic phonon coupling in vapor-liquid-solid grown ZnO nanowires," Appl. Phys. Lett. 95, 193111 (2009).
[29] Wen-Ting Chiou, Wan-Yu Wu and Jyh-Ming Ting, "Growth of single crystal ZnO nanowires using sputter deposition," Diamond and Related Materials vol. 12, Issues 10-11, October-November 2003, pp. 1841-1844.
[30] Ming-Ta Chen and Jyh-Ming Ting, "Sputter deposition of ZnO nanorods/thin-film structures on Si," Thin Solid Films vol. 494, Issues 1-2, 3 January 2006, pp. 250-254.
[31] Sriram Muthukumar, Haifeng Sheng, Jian Zhong, Student Member, IEEE, Zheng Zhang, Nuri William Emanetoglu, Associate Member, IEEE, and Yicheng Lu, "Selective MOCVD Growth of ZnO Nanotips," IEEE Transactions On Nanotechnology, vol. 2, no. 1, March 2003.
[32] Guillaume Perillat-Merceroz, Pierre-Henri Jouneau, Guy Feuillet, Robin Thierry, Milan Rosina, Pierre Ferret, "MOCVD growth mechanisms of ZnO nanorods," J. Phys.: Conference Series 209, 1 (2010) 012034.
[33] Lionel Vayssieres, "Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions," Adv. Mater. 2003, 15, no. 5, March 4.
[34] Ming-Kwei Lee, Chen-Lin Ho, Chia-Chi Lin, Nai-Roug Cheng, Ming-Hsuan Houng, Yu-Kai Chien, and Chih-Feng Yen, "Light Extraction Efficiency Enhancement of GaN Blue LED with ZnO Nanotips Prepared by Aqueous Solution Deposition," J. Electrochem. Soc., vol. 158, Issue 5, pp. D286-D289 (2011).
[35] Giuseppe Marcì, Vincenzo Augugliaro, María J. López-Muñoz, Cristina Martín, Leonardo Palmisano, Vicente Rives, Mario Schiavello, Richard J. D. Tilley, and Anna Maria Venezia, "Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 1. Surface and Bulk Characterization," J. Phys. Chem. B, 2001, 105 (5), pp. 1026–1032.
Chapter 2:
[1] Youngjo Tak and Kijung Yong, "Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method," J. Phys. Chem. B, 2005, 109 (41), pp. 19263–19269.
[2] Jean-François Hochepied, Ana Paula Almeida de Oliveira, Véronique Guyot-Ferréol, and Jean-François Tranchant, "Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation," J. Cryst. Growth, vol. 283 (2005) pp. 156-162.
[3] Zhuo Wang, Xue-feng Qian, Jie Yin and Zi-kang Zhu, "Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency," J. Solid State Chem. vol. 177, Issue 6, June 2004, pp. 2144-2149.
[4] S. Deki, T. Aoi, A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Sci. vol. 32, no. 16, pp. 4269-4273.
[5] Scanning Electron Microscope, http://www.purdue.edu/rem/rs/sem.htm
Chapter 3:
[1] G. Xiong, U. Pal, J. G. Serrano, K. B. Ucer, and R. T. Williams, Phys. Stat. Sol. (c) 3, No. 10, (2006) pp. 3577–3581.
[2] H. Kleinwechter, C. Janzen, J. Knipping, H. Wiggers, P. Roth, “Formation and properties of ZnO nano-particles from gas phase synthesis processes,” J. Mater. Sci., 37 (2002) pp. 4349 – 4360.
[3] E. Tang, G. Cheng, X. Pang, X. Ma, F. Xing, “Synthesis of nano-ZnO/poly (methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property,” Colloid Polym. Sci. (2006) 284: 422–428.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.252.140
論文開放下載的時間是 校外不公開

Your IP address is 3.144.252.140
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code