Responsive image
博碩士論文 etd-0828112-143340 詳細資訊
Title page for etd-0828112-143340
論文名稱
Title
金催化的表面科學研究
Surface Science Studies of Catalysis by Gold
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
168
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-26
繳交日期
Date of Submission
2012-08-28
關鍵字
Keywords
丙醛、一氧化碳氧化反應、金、環三聚反應
cyclotrimerization, Gold, TPD, RAIRS, XPS, LEED, propanal, CO oxidation
統計
Statistics
本論文已被瀏覽 5697 次,被下載 501
The thesis/dissertation has been browsed 5697 times, has been downloaded 501 times.
中文摘要
長久以來黃金被認為是不具催化活性的金屬,然而在Bond、Hutchings與Haruta等人開拓性的研究後,此一印象被改變了。近幾年對金的研究著重在解析一氧化碳氧化反應(CO oxidation)與異相或勻相催化有機化合物的部分氧化反應(partial oxidation),例如環氧化反應(epoxidation)、醇的酯化反應(esterification),金催化儼然已成為熱門的研究課題。本論文結合程溫脫附實驗(TPD)、反射吸收式紅外光譜實驗(RAIRS)、x光光電子譜(XPS)、低能量電子繞射實驗(LEED)以及密度泛函理論計算(DFT)探討一氧化碳(CO)與羥基的氧化反應和丙醛的環三聚反應。
在一氧化碳與羥基的氧化反應中我以電子束誘發吸附在Au(110)與Au(531)表面的D2O分解而產生氘取代的羥基(OD),在TPD譜中可觀測到經電子束轟擊後的D2O於175 K出現一脫附峰,且在230 K也出現D2的脫附,此外O 1s的XP能譜也可觀測到531.32 eV的訊號出現,此訊號代表OD已在表面生成。將此OD覆蓋的Au(110)表面吸附上CO後可觀測到110 K與150 K有二氧化碳(CO2)脫附;以Au(531)進行此實驗則可觀測到CO2於105 K、140 K與180 K脫附。經由改變CO與D2O覆蓋率的實驗可發現CO與D2O皆較偏好吸附在低配位的金原子上,且吸附在低配位金原子的D2O僅需30 eV的電子就可分解產生OD;吸附在較高配位金原子的D2O則需60 eV才可分解。推測此一吸附位置之效應或許與較小之金奈米粒子的高催化活性相關。在反應機制的研究上我們發現CO與OD之反應與水煤氣轉移反應(WGS)機制十分相似,推測水可促進金催化CO氧化反應之效率的原因可能是因為多了此一反應路徑。
在第二個課題中我們發現當丙醛於180 K吸附到Au(110)時,在TPD譜中可觀察到環三聚丙醛(2,4,6-triethyl-1,3,5-trioxane,(C2H5CHO)3)於340 K脫附,RAIRS與XPS結果顯示環三聚反應於180 K時發生。相同的反應也在Au(531)表面上觀察到,然而在Au(111)表面上則無此反應,僅觀察到丙醛的分子脫附。此結果說明反應發生的活性位置應是低配位的金原子以及表面的溝槽結構。在與金同族的金屬Ag(110)與Cu(110)表面的研究中,丙醛的環三聚反應皆沒有發生而証實金本身的元素性質也是催化此反應的重要關鍵。將丙醛於相同溫度條件下吸附到同樣具有(1x2)重排結構的Pt(110)表面時,我們發現丙醛將以η2(C,O)的鍵結模式吸附,然因為此鍵結模式使得丙醛與Pt表面的作用太強轉而進行去羰基反應(decarbonylation)。分析這些結果我們推測丙醛在金表面的反應可能是由於金的相對論效應(relativistic effect)造成低配位金原子與丙醛之間有相對於銅和銀較強的交互作用。此外,透過DFT計算我們發現低配位的金原子與羰基的氫原子之間似氫鍵的作用也幫助丙醛分子自聚集在活性位置並使丙醛頭尾排列成適合C-O-C鍵形成的位向,金表面與丙醛就像先組成一個錯合物使得原本不易發生的分子間三聚反應變成較容易發生的單分子內反應。

關鍵字:環三聚反應, 金, 一氧化碳氧化反應, 丙醛
Abstract
Gold’s reputation as an inactive catalyst has been changed since the discoveries made by pioneers, including Bond, Hutchings, and Haruta. Today, exploring gold’s potential to catalyze a range of heterogeneous and homogeneous reactions has been a hot topic. In this dissertation, reaction of CO and hydroxyl groups and cyclotrimerization of propanal (C2H5CHO) catalyzed by gold were studied by using temperature-programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), X-ray photoemission spectroscopy (XPS), low energy electron diffraction (LEED) and density functional theory (DFT) calculations.
keywords: LEED, XPS, RAIRS,TPD, Gold, cyclotrimerization, propanal, CO oxidation In the first topic, CO oxidation by hydroxyl groups prepared by electron beam bombardment of physisorbed water was performed on Au(110) and Au(531). The formation of hydroxyl groups was evidenced by the observation of the desorption of D2O at 175 K and D2 at 230 K in TPD, in conjunction with the O 1s peak at 531.32 eV in XPS. The adsorption of CO on the hydroxyl-covered surface resulted in CO2 desorption at 110 K and 150 K on Au(110), and 105 K, 140 K and 180 K on Au(531).
In the investigation of various D2O and CO coverages, the adsorption of CO and D2O was found to be preferred on low-coordinated Au atoms. Additionally, D2O on low-coordinated Au atoms required lower dissociation energy. This site effect was correlated with the high activity of smaller gold nanoparticles. Moreover, the mechanism for reaction of CO and hydroxyl groups was suggested to be similar to the water-gas-shift reaction due to the observation of the enhancement of D2 desorption after reaction.
The second topic studied the cyclotrimerization of propanal catalyzed by gold. After exposing Au(110) to propanal at 180 K, the desorption of 2,4,6-triethyl-1,3,5-trioxane ((C2H5CHO)3) was observed at 340 K. The RAIRS and XPS studies showed that the cyclotrimerization of propanal was completed at 180 K. The same results were also detected on Au(531). However, only propanal molecular desorption was found on Au(111) suggesting that the low coordination Au atoms and the trench-like structure on Au(110) and Au(531) play key roles. On Ag(110) and Cu(110), no reaction was found indicating that the intrinsic nature of gold is also an important factor for the reaction. Investigation on Pt(110) inherited with the same (1x2) missing-row structure revealed that the decarbonylation of propanal occurred due to the stronger η2(C,O) bonding mode. The reactions observed on Au(110), Au(531), and Pt(110) strongly suggest that the activity for the reactions may result from the relativistic effect of gold. The DFT calculations further showed the interactions between hydrogen in carbonyl groups and low-coordinated Au atoms (O=C-H…Au) help to gather propanal molecules and preorganize them at specific surface sites while an intracomplex reaction takes place.
目次 Table of Contents
Chapter 1 Introduction ………… 1
Chapter 2 Experimental Section ………… 7
2.1 Principles and experimental procedures ………… 7
2.2 Design of a Chamber ………… 22
2.3 Descriptions of electron gun used in this dissertation ………… 30
Chapter 3 Gold Catalyzed CO oxidation ………… 32
Backgroung ………… 32
Results ………… 37
3.1 D2O on Au(110) ………… 37
3.2 Activation of physisorbed D2O on Au(110) ………… 39
3.3 Reaction of CO with electron activated D2O on Au surfaces ………… 49
Discussion ………… 73
Conclusions ………… 79
Chapter 4 Gold Catalyzed Cyclotrimerization of Aldehydes ………… 84
Background ………… 84
Results ………… 88
4.1 Cyclotrimerization of propanal on Au(110)-(1x2) ………… 88
4.2 Mechanistic studies of cyclotrimerization of C2H5CHO ………… 99
4.3 Relation between yields of (C2H5CHO)3 and conversion times ………… 123
4.4 Studies on Cyclotrimerization of acetaldehyde (R = CH3) on Au surfaces ………… 124
4.5 Studies on Cyclotrimerization of other multiple bond molecular species (CH3C≡N, phC≡N, CH3C≡CH, phN=C=O) on Au surfaces ………… 130
Disscussion ………… 132
Conclusions ………… 143
Appendix ………… 148
參考文獻 References
Chapter 1
1.(a) Demann, E. T. K.; Stein, P. S.; Haubenrich, J. E. J. Long-Term Effects Med. Implants 2005, 15, 687. (b)Messori, L.; Gabbiani, C. Met. Comp. Cancer Chemother. 2005, 355. (c) Kostova, I. Anti-Cancer Agents Med. Chem. 2006, 6, 19.
2.Haruta, M. Chem. Rec. 2003, 3, 75.
3.(a) Bond, G. C.; Sermon, P. A. Gold Bull. 1973, 6. 102. (b) Bond, G. C.; Sermon, P. A. J. Chem. Soc., Chem. Comm. 1973, 444.
4.Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405.
5.Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, 2006.
6.(a) Outka, D. A.; Madix, R. J. Surf. Sci. 1987, 179, 351. (b) Outka, D. A.; Madix, R. J. Surf. Sci. 1987, 179, 361.
7.Outka, D. A.; Madix, R. J. J. Am. Chem. Soc. 1987, 109, 1708.
8.Gong, J.; Mullins, C. B. Acc. Chem. Res. 2009, 42, 1063.
9.Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709.
10.Mavrikakis, M.; Stoltze, P.; Nørskov, J. K. Catal. Lett. 2000, 64, 101.

Chapter 2
1.Woodruff, D. P.; Delchar, T. A. Modern Techniques of Surface Science, 1st ed.; Cambridge University Press, 1986.
2.Duke, C. B. PNAS 2003, 100, 3858.
3.Atkins, P.; Paula, J. D. Atkins’ Physical Chemistry, 9th ed.; Oxford University Press, 2010.
4.Redhead, P. A. Vacuum 1962, 12, 203.
5.King, D. A.; Surf. Sci. 1975, 47, 384.
6.Parker, D. H.; Jones, M. E.; Koel, B. E. Surf. Sci. 1990, 233, 65.
7.Greenler, R. G.; J. Chem. Phys. 1966, 44, 310.
8.Vickerman, J. C. Surface Analysis – The Principal Techniques, 1st ed.; New York: Wiley, 1997.
9.Attard, G.; Barnes, C. Surface; Oxford University Press, 1998.
10.Fan, J.; Trenary, M. Langmuir 1994, 10, 3649.
11.Persson, B. N. J. Solid State Commun. 1979, 30, 163.

Chapter 3
1.Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405.
2.Bond, G. C.; Thompson, D. T. Gold Bull. 2000, 33, 41.
3.Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
4.Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935.
5.Daté, M.; Haruta, M. J. catal. 2001, 201, 221.
6.Kung, M. C.; Davis, R. J.; Kung, H. H. J. Phys. Chem. C 2007, 111, 11767.
7.Outka, D. A.; Madix, R. J. Surf. Sci. 1987, 179, 351
8.Lazaga, M. A.; Wickham, D. T.; Parker, D. H..; Kastanas, G.N.; Koel, B. E. ACS Symp. Ser. 1993, 523, 90
9.Gottfried, J. M.; Schmidt, K. J.; Schroeder, S. L. M.; Christmann, K. Surf. Sci. 2002, 511, 65
10.Gottfried, J. M.; Schmidt, K. J.; Schroeder, S. L. M.; Christmann, K. Surf. Sci. 2003, 525, 197
11.Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709
12.Pollard, J. E. Rev. Sci. Instrum. 1992, 63, 1771.
13.Wheeler, M. C.; Reeves, C. T.; Seets, D. C.; Mullins, C. B. J. Chem. Phys. 1998, 108, 3057.
14.Wheeler, M. C.; Seets, D. C.; Mullins, C. B. J. Chem. Phys. 1997, 107, 1672.
15.Kim, T. S.; Gong, J.; Ojifinni, R. A.; White, J. M.; Mullins, C. B. J. Am. Chem. Soc. 2006, 128, 6282
16.Ojifinni, R. A.; Froemming, N. S.; Gong, J.; Pan, M.; Kim, T. S.; White, J. M.; Henkelman, G.; Mullins, C. B. J. Am. Chem. Soc. 2008, 130, 6801.
17.Quiller, R. G.; Baker, T. A.; Deng, X.; Colling, M. E.; Min, B. K.; Friend, C. M. J. Chem. Phys. 2008, 129, 064702.
18.Kay, B. D.; Kykke, K. R.; Creighton, J. R.; Ward, S. J. J. Chem. Phys. 1989, 91, 5120.
19.Wang, J.; Koel, B. E. Surf. Sci. 1999, 436, 15.
20.Venyamino, S. Y.; Prendergast, F. G. Anal. Biochem. 1997, 248, 234.
21.Schiros, T.; Naslund, L.-Å.; Andersson, K.; Gyllenpalm, J.; Karlberg, G. S.; Odelius, M.; Ogasawara, H.; Pettersson, L. G. M.; Nilsson, A. J. Phys. Chem. C 2007, 111, 15003.
22.Clay, C.; Cummings, L.; Hodgson, A. Surf. Sci. 2007, 601, 562.
23.Stuve,E. M.; Jorgensen, S. W.; Madix, R. J. Surf. Sci. 1984, 146, 179.
24.Yamamoto, S.; Andersson, K.; Bluhm, H.; Ketteler, G.; Starr, D. E.; Schiros, T.; Ogasawara, H.; Pettersson, L. G. M.; Salmeron, M.; Nilsson, A. J. Phys. Chem. C 2007, 111, 7848.
25.Andersson, K.; Ketteler, G.; Bluhm, H.; Yamamoto, S.; Ogasawara, H.; Pettersson, L. G. M.; Salmeron, M.; Nilsson, A. J. Phys. Chem. C 2007, 111, 14493.
26.Sueyoshi, T.; Sasaki, T.; Iwasawa, Y. J. Phys. Chem. B 1997, 101, 4648.
27.Stuve, E. M.; Madix, R. J.; Sexton, B. A. Surf. Sci. 1981, 111, 11.
28.Syomin, D.; Kim, J.; Koel, B. E.; Ellison, G. B. J. Phys. Chem. B 2001, 105, 8387
29.Deng, X.; Min, B. K.; Guloy, A.; Friend, C. M. J. Am. Chem. Soc. 2005, 127, 9267.
30.Deng, X.; Friend, C. M. J. Am. Chem. Soc. 2005, 127, 17178.
31.Sault, A. G. ; Madix, R. J. ; Campbell, C. T. Surf. Sci. 1986, 169, 347.
32.Mann, M. M.; Hustrulid, A.; Tate, J. T. Phys. Rev. 1940, 58, 340
33.Senanayake, S. D. ;Stacchiola, D. ; Liu, P. ; Mullins, C. B. ; Hrbek, J. ; Rodriguez, J. A. J. Phys. Chem. C 2009, 113, 19536.
34.Zhao, X.; Ma, S.; Hrbek, J.; Rodriguez, J. A. Surf. Sci. 2007, 601, 2445.
35.Min, B. K. ; Alemozafar, A. R. ; Pinnaduwage, D. ; Deng, X. ; Friend, C. M. J. Phys. Chem. B 2006, 110, 19833.
36.White, J. M. Langmuir 1994, 10, 3946.
37.Petrik, N. G. ; Kimmel, G. A. Phys. Rev. Lett. 2003, 90, 166102.
38.Deckers, M. A. P.; Lippits, M. J.; Niewenhuys, B. E. Catal. Lett. 1998, 56, 195.
39.Deckers, M. A. P.; Lippits, M. J.; Niewenhuys, B. E. Catal. Today 1999, 54, 381.
40.McElhiney, G.; Pritchard, J. Surf. Sci. 1976, 60, 397.
41.Sandell, A.; Bennich, P.; Nilsson, A.; Hernnäs, B.; Björneholm, O.; Mårtensson, N. Surf. Sci. 1994, 310, 16.
42.Dücker, K.; Bonzel, H. P. Surf. Sci. 1989, 213, 25.
43.Ruggiero, C.; Hollins, P. J. Chem. Soc., Faraday Trans. 1996, 92, 4829.
44.Ruggiero, C.; Hollins, P. Surf. Sci. 1997, 377, 583.
45.Outka, D. A.; Madix, R. J. Surf. Sci. 1987, 179, 351.
46.Gottfried, J. M.; Schmidt, K. J.; Schroeder, S. L. M.; Christmann, K. Surf. Sci. 2003, 536, 206.
47.Meier, D. C.; Bukhtiyarov, V.; Goodman, D. W. J. Phys. Chem. 2003, 107, 12668.
48.Meyer, R.; Lemire, C.; Shaihutdinov, Sh. K.; Freund, H.-J. Gold Bull. 2004, 37, 72.
49.Gottfried, J. M. Ph.D. Thesis, Insititut für Cheme der Freien Universität Berlin, 2003.
50.Liu, Z. P. ; Hu, P. ; Alavi, A. J. Am. Chem. Soc. 2002, 124,14770.
51.Rodriguez, J. A. ; Ma, S. ; Liu, P. ; Hrbek, J. ; Evans, J. ; Perez, M. Science 2007, 318, 1757
52.Liu, P. ; Rodriguez, J. A. J. Chem. Phys. 2007, 126, 164705.
53.Redhead, P. A. Vacuum 1962, 12, 203.
54.Haruta, M. Gold Bull. 2004, 37, 27
55.Falsig, H. ; Hvolbæk, B. ; Kristensen, I. S. ; Jiang, T. ; Bligaard, T. ; Christensen, C. H. ; Norskov, J. K. Angew. Chem., Int. Ed. 2008, 47, 4835.
56.Mavrikakis, M. ; Stolze, P. ; Norskov, J. K. Catal. Lett. 2000, 64, 101.
57.Jiang, T. ; Mowbray, D. J. ; Dobrin, S. ; Falsig, H. ; Hvolbæk, B. ; Bligaard, T. ; Norskov, J. K. J. Phys. Chem. C 2009, 113, 10548.
58.(a) Kimmel, G. A. ; Orlando, T. M. Phys. Rev. Lett. 1995, 75, 2606. (b) Kimmel, G. A. ; Orlando, T. M. Phys. Rev. Lett. 1996, 77, 3983. (c) Orlando, T. M. ; Kimmel, G. A. Surf. Sci. 1997, 390, 79. (d) Petrik, N. G. ; Kimmel, G. A. J. Chem. Phys. 2004, 121, 3727.
59.Rowntree, P. ; Parenteau, L. ; Sanche, L. J. Chem. Phys. 1991, 94, 8570.
60.Orlando, T. M. ; Aleksandrov, A. B. ; Herring, J. J. Phys. Chem. B 2003, 107, 9370.
61.Lane, C. D.; Petrik, N. G.; Orlando, T. M., and Kimmel, G. A. J. Chem. Phys. 2007, 127, 224706.
62.Daté, M.; Okumura, M.; Tsubota, S.; Haruta, M. Angew. Chem., Int. Ed. 2004, 43, 2129.
63.(a) Ruggiero, C.; Hollins, P. J. Chem. Soc., Faraday Trans. 1996, 92, 4829. (b) Ruggiero, C.; Hollins, P. Surf. Sci.1997, 377, 583.
64.Kim, J.; Samano, E.; Koel, B. E. J. Phys. Chem. B 2006, 110, 17512.
65.Daté, M.; Haruta, M. J. catal. 2001, 201, 221.

Chapter 4
1.Bond, G. C.; Sermon, P. A.; Webb, G.; Buchanan, D. A.; Wells, P. B. J. Chem. Soc. Chem. Commun. 1973, 13, 444b.
2.Sermon, P. A.; Bond, G. C.; Wells, P. B. J. Chem. Soc. Faraday Trans. 1979, 1, 385.
3.Bailie, J. E.; Hutchings, G. J. Chem. Commun. 1999, 2151.
4.Claus, P. Appl. Catal. A 2005, 291, 222.
5.Concepción, P.; Serna, P.; Corma, A. Angew. Chem. Int. Ed. 2007, 46, 7266.
6.Corma, A.; Serna, P.; Garcia, H. J. Am. Chem. Soc. 2007, 129, 6358.
7.Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405.
8.Bond, G. C.; Thompson, D. T. Gold Bull. 2000, 33, 41.
9.Haruta, M. Nature 2005, 437, 1098.
10.Prati, L.; Rossi, M. J. Catal. 1998, 176, 552.
11.Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Hutchings, G. J. Chem. Commun. 2002, 7, 696.
12.Corma, A.; Domine, M. Chem. Commun. 2005, 32, 4042.
13.Biella, S.; Prati, L.; Rossi, M. J. Catal. 2002, 206, 242.
14.Porta, F.; Prati, L.; Rossi, M.; Coluccia, S.; Martra, G.; Catal. Today 2000, 61, 165.
15.Biella, S.; Castiglioni, G. L.; Fumagalli, C.; Prati, L.; Rossi, M. Catal. Today 2002, 72, 43.
16.Jorgensen, B.; Christiansen, S. E.; Thomsen, M. L. D.; Christensen, C. H. J. Catal. 2007, 251, 332.
17.Abad, A.; Concepción, P.; Corma, A.; García, H. Angew. Chem. In. Ed. 2005, 44, 4066
18.Abad, A.; Corma, A.; García, H. Chem. Eur. J. 2008, 14, 212.
19.Outka, D. A.; Madix, R. J. J. Am. Chem. Soc. 1987, 109, 1708.
20.Lazaga, M. A.; Wickham, D. T.; Parker, D. H.; Kastanas, G. N.; Koel, B. E. ACS symp. Ser. 1993, 523, 90.
21.Gong, J. L.; Flaherty, D. W.; Ojifinni, R. A.; White, J. M.; Mullins, C. B. J. Phys. Chem. C. 2008, 112, 5501.
22.Xu, B. J.; Liu, X. Y.; Haubrich, J.; Madix, R. J.; Friend, C. M. Angew. Chem. In. Ed. 2009, 48, 4206.
23.Xu, B. J.; Liu, X. Y.; Haubrich, J.; Friend, C. M. Nat. Chem. 2010, 2, 61.
24.Xu, B. J.; Haubrich, J.; Baker, T. A.; Kaxiras, E.; Friend, C. M. J. Phys. Chem. C 2011, 115, 3703.
25.Xu, B. J.; Haubrich, J.; Freyschlag, C. G.; Madix, R. J.; Friend, C. M. Chem. Sci. 2010, 1, 310.
26.Xu, B. J.; Madix, R. J.; Friend, C. M. J. Am. Chem. Soc. 2010, 132, 16571.
27.Liu, X. Y.; Xu, B. J.; Haubrich, J.; Madix, R. J.; Friend, C. M. J. Am. Chem. Soc. 2009, 131, 5757.
28.Gong, J. L.; Mullins, C. B. J. Am. Chem. Soc. 2008, 130, 16458.
29.Outka, D. A.; Madix, R. J. Surf. Sci. 1987, 179, 361.
30.Pan, M.; Flaherty, D. W.; Mullins, C. B. J. Phys. Chem. Lett. 2011, 2, 1363.
31.Sim, W. S.; Gardner, P.; King, D. A. J. Am. Chem. Soc. 1996, 118, 9953.
32.Henderson, M. A.; Zhou, Y.; White, J. M. J. Am. Chem. Soc. 1989, 111, 1185.
33.Zhau, H.; Kim, J.; Koel, B. E. Surf. Sci. 2003, 538, 147.
34.Sbrana, G.; Schettino, V. J. Mol. Spectrosc. 1970, 33, 100.
35.Avery, N. R.; Weinberg, W. H.; Anton, A. B.; Toby, B. H. Phys. Rev. Lett. 1983, 51, 682.
36.Davis, J. L.; Barteau, M. A. J. Am. Chem. Soc. 1989, 111, 1782.
37.Lamont, C. L. A.; Stenzel, W.; Conrad, H.; Bradshaw, A. M. J. Electron Spectrosc. Rel. Phenom. 1993, 64, 287.
38.Wu, G.; Stacchiola, D.; Collins, M.; Tysoe, W. T. Surf. Rev. Lett. 2000, 7, 271.
39.McCabe, R. W.; Dimaggio, C. L.; Madix, R. J. J. Phys. Chem. 1985, 89, 854.
40.Madix, R. J.; Yamada, T.; Johnson, S. W. Appl. Surf. Sci. 1984, 19, 43.
41.NIST Computational Chemistry Comparison and Benchmark Data-Base http://srdata.nist.gov/cccbdb/vsf.asp (accessed August 12, 2011)
42.Wasserman, A. Nature, 1941, 147, 391.
43.Zaera, F.; J. Am. Chem. Soc. 1989,111, 8744.
44.Zaera, F. Surf. Sci. 1989, 219, 453.
45.Davis, J. L.; Barteau, M. A. Surf. Sci. 1990, 235, 235.
46.Shekhar, R.; Barteau, M. A.; Plank, R. V.; Vohs, J. M. J. Phys. Chem. B 1997, 101, 7939.
47.Houtman, C. J.; Barteau, M. A. J. Catal. 1991, 130, 528.
48.Gorin, D. J.; Toste, F. D. Nature, 446, 395.
49.Brandt, K.; Chiu, M. E.; Watson, D. J.; Tikhov, M. S.; Lambert, R. M. J. Phys. Chem. C 2012, 116, 4605.
50.Roy, J.-R.; Laliberté, M.-A.; Lavoie, S.; Castonguay, M.; McBreen, P. H. Surf. Sci. 2005, 578, 43.
51.Bevington, J. C. Q. Rev. Chem. Soc. 1952, 6, 141.
52.Sato, S.; Sakurai, C.; Furuta, H.; Sodesawa, T.; Nozaki, F. J. Chem. Soc., Chem. Commun. 1911, 1327.
53.Hollenstein, H.; Günthard, H. H.; Spectrochim. Acta A 1971, 27, 2027.
54.Bu, Y.; Breslin, J.; Lin, M. C. J. Phys. Chem. B 1997, 101, 1872.
55.Webb, M. J.; Driver, S. M.; King, D. A. J. Phys. Chem. B 2004, 108, 1955.
56.Martin, D.; Bauer, M.; Pankratov, V. A. Russian Chem. Rev. 1978, 47, 975.
57.Forsberg, J. H.; Spaziano, V. T.; Klump, S. P.; Sanders, K. M. J. Heterocyclic Chem. 1988, 25, 767.
58.Henderson, M. A.; Mitchell, G. E. White, J. M. Surf. Sci. 1987, 188, 208.
59.Richter, L. J.; Ho, W. J. Chem. Phys. 1985, 83, 2165.
60.Stacchiola, D.; Wu, G.; Kaltchev, M.; Tysoe, W. T. Surf. Sci. 2001, 486, 9.
61.Kobayashi, M.; Iwamoto, R.; Tadokoro, H. J. Chem. Phys. 1966, 44, 922.
62.Hung,W.-H.; Bernasek, S. L. Surf. Sci. 1996, 346, 165.
63.Walczak, M. M.; Thiel, P. A. Surf. Sci. 1989, 220, L647.
64.Walczak, M. M.; Thiel, P. A. Surf. Sci. 1990, 238, 180.
65.Hofmann, M.; Wegner, H.; Glenz, A.; Wöll, Ch.; Grunze, M. J. Vac. Sci. Technol. A 1994, 12, 2063.
66.Tysoe, W. T.; Nyberg, G. L.; Lambert, R. M. J. Chem. Soc., Chem. Commum. 1983, 23.
67.Ormerod, R. M.; Lambert, R. M. Catal. Lett. 1990, 6, 121.
68.Lomas, J. R.; Baddeley, C. J.; Tikhov, M. S.; Lambert, R. M. Langmuir 1995, 11, 3048.
69.Kyriakou, G.; Kim, J.; Tikhov, M. S.; Macleod, N.; Lambert, R. M. J. Phys. Chem. B 2005, 109, 10952.
70.Budzelaar, P. H. M.; Cremer, D.; Wallasch, M.; Würthwein, E.-U.; Schleyer, P.V. R. J. Am. Chem. Soc. 1987, 109, 6290.
71.Zhu, Z.; Espenson, J. H. Synthesis 1998, 417
72.(a) Dermer, O. C.; Jenkins, A. M.; J. Org. Chem. 1959, 24, 869; (b) Kagan, J.; Agdeppa, D. A.; Chang, A. I.; Chen, S.-A.; Harmata, M. A.; Melnick, B.; Patel, G.; Poorker, C.; Singh, S. P. J. Org. Chem. 1981, 46, 2916.
73.Nishiyama, K.; Oba, M. Bull. Chem. Soc. Jpn. 1987, 60, 2289.
74.Sato, S.; Furuta, H.; Sodesawa, T.; Nozaki, F. J. Chem. Soc., Perkin Trans. 2 1993, 385.
75.Schwerdtfeger, P.; Hermann, H. L.; Schmidbaur, H. Inorg. Chem. 2003, 42, 1334
76.Schwerdtfeger, P.; Boyd, P. D. W.; Burrell, A. K.; Robinson, W. T.; Taylor, M. J. Inorg. Chem. 1990, 29, 3593.
77.Sault, A. G.; Madix, R. J. Surf. Sci. 1986, 169, 347.
78.Biener, M. M.; Biener, J.; Friend, C. M. Surf. Sci. 2007, 601, 1659.
79.(a) Jones, G.; Gladys, M. J.; Ottal, J.; Jenkins, S. J.; Held, G. Phys. Rev. B 2009, 79, 165420. (b) Puisto, S. R.; Held, G.; Ranea, V.; Jenkins, S. J.; Mola, E. E.; King, D. A. J. Phys, Chem. B 2005, 109, 22456.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code