Responsive image
博碩士論文 etd-0828117-142749 詳細資訊
Title page for etd-0828117-142749
論文名稱
Title
奈米銀線合成條件優化及應用分析
The Optimal Synthesis and Application Analysis of AgNWs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-13
繳交日期
Date of Submission
2017-09-28
關鍵字
Keywords
奈米銀線、UV雷射燒蝕、近場電噴、一次一因子、長徑比
one-factor-at-a-time, AgNWs, aspect ratio, UV laser ablation, near-field electrospun
統計
Statistics
本論文已被瀏覽 5668 次,被下載 6
The thesis/dissertation has been browsed 5668 times, has been downloaded 6 times.
中文摘要
多元醇法製備奈米銀線是製作奈米銀線的方式之一,以奈米銀線的長徑比為目標進行參數之優化方式並未有人深入探討,因此本論文應用一次一因子,以長徑比為目標優化奈米銀線。將優化之奈米銀線噴塗於基板並用UV雷射圖案化薄膜以量測其薄膜特性,另一方面亦將優化後之奈米銀線應用新式的近場靜電紡絲(NEFS)之製程技術,探討有機高分子材料結合奈米銀粒子及奈米線製作出透明、有序之導電奈米銀複合纖維薄膜之可行性。最後將奈米銀線薄膜做成一電路元件與目前可見之電路元件做特性上之比較。於檢測分析利用SEM、EDS、FTIR、N & K Analyzer及四點探針分析奈米銀線及複合纖維的微觀表面型態、材料成份及特性、薄膜之厚度與穿透度關係以及薄膜片電阻。另外針對所製程的奈米銀線進行XRD及TEM分析奈米銀線的材料特性及觀察微區形貌及聚合物殘餘程度,本實驗結果顯示一次一因子優化多元醇法合成的成份配比為EG(20 ml)、AgCl(0.05g)及PVP/Ag(1.5)的條件下可以得到長徑比為74.85倍之條件優化的奈米銀線。經由XRD繞射分析之結果可知本論文成功配置優化出結晶良好之奈米銀線,應用TEM並做選區繞射光譜可更確認所合成的奈米銀線為單晶結構且是以(111)面沿[110]方向成長成奈米銀線。薄膜之光學分析可得知薄膜的厚度越厚則穿透度會下降。再藉由四點探針之量測分可得知膜厚與片電阻值呈負相關。從SEM觀察經過雷射圖案化薄膜之表面形貌,當雷射能量為0.55 W時,基板表面會開始出現明顯的燒蝕孔洞,同時比對未圖案化與圖案化薄膜之穿透度及霧度值,經圖案化後整體穿透度最高被可升至75 %以上。最後應用上將優化長徑比的奈米銀線利用近場電噴製成導電膜時,LED所量測出的輝度值高於商用級銀膠。做為假牙應用上,將PMMA摻入0.5%奈米銀線,可提昇PMMA/AgNWs的機械性質。
Abstract
The polyol method is one of methods used to make AgNWs. However, the optimal aspect ratio of AgNWs was not discussed. In this paper, the one-factor-at-a-time method is used to optimize the aspect ratio of AgNWs. Next, the optimized AgNWs was prepared on the thin films by spin coating and near-field electrospun and then the AgNWs film was patterned with UV laser ablation. Finally, the characteristics of the circuit component with the AgNWs films was compared to that of the commercial circuit component. The morphology, material composition, and optical and electrical and mechanical properties of the AgNWs and the AgNWs films were analyzed by SEM, EDS, FTIR, N & K analyzer, nanoindenter, and four-point probe. In addition, the quality of lattice, high resolution morphology of AgNWs and polymer residue were analyzed by XRD and TEM. The experiment results show that the AgNWs with optimal aspect ratio 74.85 can be fabricated by adopting the synthesis parameter of 20 ml EG, 0.05g AgCl, and 1.5 PVP/Ag+ ratio. The XRD and TEM results show that the fabricated AgNWs possess good crystallization and the lattice plane (111) grows in the [110] direction. The optoelectronic results illustrate that the thickness of the AgNWs film is inversely proportional to the transmittance and inversely correlation of the sheet resistance. From the morphology of the laser patterned film, there is obvious ablation appearing on the surface of substrate when the laser energy was 0.55W. Compared with the transmittance and haze of non-patterned film, the max transmittance of patterned film can be raised to 75%. The LED circuit application results indicate that the brightness of AgNWs film is higher than that of commercial silver paste.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 論文架構 6
第二章 文獻回顧 7
2.1 晶種生成法 7
2.2 模板合成法 8
2.3 水熱合成法 9
2.4 多元醇還原法 10
2.5 靜電紡絲製程技術 12
2.5.1 遠場靜電紡絲 13
2.5.2 近場靜電紡絲 14
2.6 透明導電薄膜技術 16
2.7 雷射圖案化導電薄膜技術 19
第三章 研究方法 22
3.1 實驗方法與架構 22
3.1.1 多元醇法合成奈米銀之因子探討 22
3.1.2一次一因子優化合成高長徑比奈米銀之因子探討 23
3.1.3 奈米銀線光電特性及應用探討 27
3.2 實驗藥品與設備 27
3.2.1 合成溶液配置所需之設備 27
3.2.2 近場電紡與近場電噴霧法製程所需之設備 28
3.2.3 雷射圖案化製程之設備 30
3.4 實驗分析儀器 31
3.4.1 四點探針 31
3.4.2 X光射線粉末繞射儀分析(X-Ray Power Diffractometer, XRD) 33
3.4.3 場發射掃描式電子顯微鏡(FE-SEM)及EDX分析 34
3.4.4 傅里葉轉換紅外線光譜儀(FTIR) 34
3.4.5 薄膜特性分析儀(N & K analyzer) 35
3.4.6 光學特性量測系統 36
3.4.7 穿透式電子顯微鏡 38
第四章 實驗結果與討論 39
4.1 多元醇法合成參數探討及之一次一因子優化分析 39
4.1.1 合成時間與奈米銀生成之表面形貌之相關性 39
4.1.2多元醇法合成因子中之PVP的影響性 41
4.1.3晶種材料對奈米銀成長的影響 42
4.1.4銀元素來源對奈米銀合成後之表面形貌的影響 43
4.1.5 不同還原劑含量對奈米銀成長的影響 44
4.1.6 觸媒晶種的含量對奈米銀成長的影響 46
4.1.7 不同PVP與Ag克重比對奈米銀成長的影響 49
4.1.8 合成優化溶液之紅外光譜分析 52
4.1.9 能量光譜散射儀成份分析 53
4.1.10 XRD分析 54
4.1.11 穿透式電子顯微鏡對奈米銀線結構分析 55
4.2 奈米銀線製程分析及應用 57
4.2.1 近場電紡製程特性分析 57
4.2.2 奈米銀線複合纖維電紡分析及探討 57
4.2.3 近場電紡電壓對奈米銀線之影響 58
4.2.4 UV雷射圖案化AgNWs薄膜之表面形貌及EDS分析 60
4.2.5 奈米銀線薄膜光特性分析 65
4.2.6 旋轉塗佈奈米銀線薄膜之電性分析 70
4.2.7 奈米銀線薄膜之電性與穿透度關係 71
4.2.8 奈米銀線的長徑比與片電阻間之關係 72
4.2.9 奈米銀線薄膜之電路應用 74
4.2.10 奈米銀線與高分子混合之機械性質量測 75
第五章 結論 77
第六章 未來展望 79
參考文獻 80
作者簡歷 87
參考文獻 References
[1] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube Molecular Wires as Chemical Sensors," Science, vol. 287, pp. 622-625, 2000.
[2] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science, vol. 287, pp. 637-640, 2000.
[3] C. Fan, L. Chu, H. R. Rawls, B. K. Norling, H. L. Cardenas, and K. Whang, "Development of an antimicrobial resin--a pilot study," Dent Mater, vol. 27, pp. 322-8, 2011.
[4] 李淑蓮. (2016). 2016年半導體市場觀察. Available: http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/publish-479.htm
[5] W. H. Hsiao, C. Y. Chiu, and K. C. Chiou, "Applications and Technology Tendency of Transparent Conductive Film (I)," 工業材料雜誌, vol. 330, pp. 77-83, 2014.
[6] G. B. Sergeev, "2 - Synthesis and Stabilization of Nanoparticles," in Nanochemistry, ed Amsterdam: Elsevier Science, pp. 7-36, 2006.
[7] C. Faure, A. Derré, and W. Neri, "Spontaneous Formation of Silver Nanoparticles in Multilamellar Vesicles," The Journal of Physical Chemistry B, vol. 107, pp. 4738-4746, 2003.
[8] B. Sun, X. Jiang, S. Dai, and Z. Du, "Single-crystal silver nanowires: Preparation and Surface-enhanced Raman Scattering (SERS) property," Materials Letters, vol. 63, pp. 2570-2573, 2009.
[9] J. Chen, T. Herricks, and Y. Xia, "Polyol synthesis of platinum nanostructures: control of morphology through the manipulation of reduction kinetics," Angew Chem Int Ed Engl, vol. 44, pp. 2589-92, 2005.
[10] D. Chen, X. Qiao, X. Qiu, and J. Chen, "Synthesis and electrical properties of uniform silver nanoparticles for electronic applications," Journal of Materials Science, vol. 44, pp. 1076-1081, 2009.
[11] N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods," The Journal of Physical Chemistry B, vol. 105, pp. 4065-4067, 2001.
[12] N. R. Jana, L. Gearheart, and C. J. Murphy, "Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template," Advanced Materials, vol. 13, pp. 1389-1393, 2001.
[13] K. Mallick, Z. L. Wang, and T. Pal, "Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis," Journal of Photochemistry and Photobiology A: Chemistry, vol. 140, pp. 75-80, 2001.
[14] N. Leopold and B. Lendl, "A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride," The Journal of Physical Chemistry B, vol. 107, pp. 5723-5727, 2003.
[15] D.-H. Chen and Y.-W. Huang, "Spontaneous Formation of Ag Nanoparticles in Dimethylacetamide Solution of Poly(ethylene glycol)," Journal of Colloid and Interface Science, vol. 255, pp. 299-302, 2002.
[16] T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, "Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method," Nano Research, vol. 7, pp. 236-245, 2013.
[17] B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, "Self-Assembly of Gold Nanorods," The Journal of Physical Chemistry B, vol. 104, pp. 8635-8640, 2000.
[18] C. J. Murphy and N. R. Jana, "Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires," Advanced Materials, vol. 14, pp. 80-82, 2002.
[19] H. Yu, P. C. Gibbons, K. F. Kelton, and W. E. Buhro, "Heterogeneous Seeded Growth: A Potentially General Synthesis of Monodisperse Metallic Nanoparticles," Journal of the American Chemical Society, vol. 123, pp. 9198-9199, 2001.
[20] X. Tian, J. Li, and S. Pan, "Facile synthesis of single-crystal silver nanowires through a tannin-reduction process," Journal of Nanoparticle Research, vol. 11, pp. 1839-1844, 2009.
[21] Y. Song, R. M. Garcia, R. M. Dorin, H. Wang, Y. Qiu, E. N. Coker, W. A. Steen, J. E. Miller, and J. A. Shelnutt, "Synthesis of platinum nanowire networks using a soft template," Nano Lett, vol. 7, pp. 3650-5, 2007.
[22] Guangqing Yan, Li Wang, and L. Zhang, "Recent Research Progress on Preparation of Silver Nanowires by Soft Solution Method, Preparation of Gold Nanotubes and Pt Nanotubes from Resultant Silver Nanowires and their Applications in Conductive Adhesive," Reviews on Advanced Materials Science, vol. 24, pp. 10-25, 2010.
[23] C. Tang, W. Sun, J. Lu, and W. Yan, "Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property," J Colloid Interface Sci, vol. 416, pp. 86-94, 2014.
[24] J. A. Blackman, Handbook of Metal Physics vol. 5. United Kingdom: Elsevier, 2008.
[25] Y. Sun, B. Gates, B. Mayers, and Y. Xia, "Crystalline Silver Nanowires by Soft Solution Processing," Nano Letters, vol. 2, pp. 165-168, 2002.
[26] R. Gottesman, A. Tangy, I. Oussadon, and D. Zitoun, "Silver nanowires and nanoparticles from a millifluidic reactor: application to metal assisted silicon etching," New Journal of Chemistry, vol. 36, pp. 2456-2459, 2012.
[27] L. K. Kurihara, G. M. Chow, and P. E. Schoen, "Nanocrystalline Metallic Powders and Films Produced by the Polyol Method," Nanostructured Materials, vol. 5, pp. 607-613, 1995.
[28] B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, "Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis," J Phys Chem B, vol. 110, pp. 15666-75, 2006.
[29] S. Ino, "Stability of Multiply-Twinned Particles," Journal of the Physical Society of Japan, vol. 27, pp. 941-953, 1969.
[30] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, "Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)," Chemistry of Materials, vol. 14, pp. 4736-4745, 2002.
[31] M. R. Johan, N. A. K. Aznan, S. T. Yee, I. H. Ho, S. W. Ooi, N. Darman Singho, and F. Aplop, "Synthesis and Growth Mechanism of Silver Nanowires through Different Mediated Agents (CuCl2 and NaCl) Polyol Process," Journal of Nanomaterials, vol. 2014, pp. 1-7, 2014.
[32] J. Chen, B. J. Wiley, and Y. Xia, "One-dimensional nanostructures of metals: large-scale synthesis and some potential applications," Langmuir, vol. 23, pp. 4120-4129, 2007.
[33] G. Taylor, "Electrically Driven Jets," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 313, pp. 453-475, 1969.
[34] L. Rayleigh, "XX.On the equilibrium of liquid conducting masses charged with electricity," Philosophical Magazine Series 5, vol. 14, pp. 184-186, 2009.
[35] J. F. Cooley, "Apparatus for Electrically Dispersing Fluids," U.S. Patent 692,631 A, 1902.
[36] W. J. Morton, "Method of dispersing fluids.," U.S. Patent 705,691 A, 1902.
[37] W. E. Teo and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies," Nanotechnology, vol. 17, pp. R89-R106, Jul 28 2006.
[38] H. R. Darrell and C. Iksoo, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, pp. 216-223, 1996.
[39] L. Wannatong, A. Sirivat, and P. Supaphol, "Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene," Polymer International, vol. 53, pp. 1851-1859, 2004.
[40] Y. Zhang, Z.-M. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, "Preparation of Core−Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning," Chemistry of Materials, vol. 16, pp. 3406-3409, 2004.
[41] C. Chang, Y. K. Fuh, and L. Lin, "A direct-write piezoelectric PVDF nanogenerator," in TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, pp. 1485-1488, 2009.
[42] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano Lett, vol. 10, pp. 726-31, 2010.
[43] D. Sun, C. Chang, S. Li, and L. Lin, "Near-field electrospinning," Nano Lett, vol. 6, pp. 839-842, 2006.
[44] J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, "Piezoelectric actuation of direct-write electrospun fibers," Sensors and Actuators A: Physical, vol. 164, pp. 131-136, 2010.
[45] C. Chang, K. Limkrailassiri, and L. Lin, "Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns," Applied Physics Letters, vol. 93, p. 123111, 2008.
[46] J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, "Piezoelectric actuation of a direct write electrospun PVDF fiber," in 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1163-1166, 2010.
[47] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, "Scalable coating and properties of transparent, flexible, silver nanowire electrodes," ACS Nano, vol. 4, pp. 2955-63, 2010.
[48] T. Kim, A. Canlier, G. H. Kim, J. Choi, M. Park, and S. M. Han, "Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate," ACS Appl Mater Interfaces, vol. 5, pp. 788-94, 2013.
[49] J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, "Solution-processed metal nanowire mesh transparent electrodes," Nano Lett, vol. 8, pp. 689-92, 2008.
[50] T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, "Fabrication of silver nanowire transparent electrodes at room temperature," Nano Research, vol. 4, pp. 1215-1222, 2011.
[51] A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, "Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells," ACS Nano, vol. 7, pp. 1081-91, 2013.
[52] C.-C. Chiu, "Optimization of Laser Dicing for QFN Packages," Master Mechanical Engineering, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Taiwan, 2015.
[53] X. C. Wang, Z. L. Li, T. Chen, B. K. Lok, and D. K. Y. Low, "355nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates," Optics and Lasers in Engineering, vol. 46, pp. 404-409, 2008.
[54] S. Kim, H. Lee, and M. Lee, "Multi-layered Ag film pattern printed by spatially modulated pulsed laser beam," Applied Surface Science, vol. 257, pp. 8013-8016, 2011.
[55] J.-W. Yoon, W. S. Chang, and S. H. Cho, "Laser direct patterning of AgNW/CNT hybrid thin films," Optics and Lasers in Engineering, vol. 73, pp. 40-45, 2015.
[56] G. Taguchi, Introduction to Quality Engineering: Quality Resources 1986.
[57] 方開泰, "均勻設計-數理方法在試驗設計中的應用," 概率統計通訊, vol. 1, pp. 56-97, 1978.
[58] 蘇慧娟, "運用反應曲面法提升基因演算法效率探討," 碩士, 工業管理系, 國立屏東科技大學, 2013.
[59] ASTM D1003-00, "Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics," ASTM International.
[60] ISO. 13468-1:1996(en), "Plastics — Determination of the total luminous transmittance of transparent materials — Part 1: Single-beam instrument," the International Organization for Standardization, 1996.
[61] ISO. 14782:1999, "Plastics -- Determination of haze for transparent materials," the International Organization for Standardization, 1999.
[62] V. R. Weidner and J. J. Hsia, "NBS reference hazemeter: its development and testing," Appl Opt, vol. 18, pp. 1619-26, 1979.
[63] M. Fan, D. Dai, and B. Huang, "Fourier Transform Infrared Spectroscopy for Natural Fibres," in Fourier Transform Infrared Spectroscopy for Natural Fibres, Fourier Transform - Materials Analysis, S. Salih, Ed., ed: InTech, 2012.
[64] J. Song, M. Chen, M. B. Olesen, C. Wang, R. Havelund, Q. Li, E. Xie, R. Yang, P. Boggild, C. Wang, F. Besenbacher, and M. Dong, "Direct electrospinning of Ag/polyvinylpyrrolidone nanocables," Nanoscale, vol. 3, pp. 4966-71, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code