Responsive image
博碩士論文 etd-0829102-103707 詳細資訊
Title page for etd-0829102-103707
論文名稱
Title
洗街車洗塵效率影響參數探討與洗塵模式建立
A Study of Optimal Operating Parameters on Road Dust Removal by a Flusher
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-14
繳交日期
Date of Submission
2002-08-29
關鍵字
Keywords
洗塵模式、街塵、操作參數、粒徑分佈、洗塵效率、街道洗塵
road dusts, road flushing model.g, particle size, distribution, flushing efficiency, street flushing, operating parameters
統計
Statistics
本論文已被瀏覽 5756 次,被下載 4826
The thesis/dissertation has been browsed 5756 times, has been downloaded 4826 times.
中文摘要
摘 要
本研究旨在探討影響洗街車洗塵效率之操作參數,期能提昇洗街成效,並探討街塵之粒徑分佈,以及建立洗街車之洗塵模式。本研究於90年10月間進行高雄都會區之主要道路現勘及街塵負荷量之採集,並建立道路分級制度,共分成A級(輕微;街塵負荷量低於1 g/m2)、B級(普通;街塵負荷量介於1~5 g/m2之間)、C級(嚴重;街塵負荷量介於5~11 g/m2之間)、D級(非常嚴重;街塵負荷量則介於11~25 g/m2之間)四級。
本研究依各級道路之街塵負荷量,擬定建議之洗街作業實施時間分別為:D級道路以20 g/m2之街塵負荷量,則以每天清洗為原則,B及C級道路以10 g/m2為街塵負荷量之容許上限,C級道路需每天實行洗街作業,B級道路則為每二天作業一次;A級道路以5 g/m2為上限值,則只需每週實行洗街作業即可。
此外,本研究亦自行設計和建置一洗街模擬實驗場,進行影響洗塵效率之洗街操作參數(如:噴嘴型式、洗街車行車速度、噴水水壓、噴嘴離地高度、噴嘴噴水角度)之模場實驗。實驗結果顯示,噴嘴型式以平扇式噴嘴為佳,車行速度、噴嘴離地高度與洗塵效率呈負相關,而噴嘴壓力與洗塵效率是呈正相關。設定洗塵效率為80%時,則各操作參數條件分別為車行速度15km/hr、噴水水壓為2.0kg/cm2、噴嘴離地高度為30公分、噴嘴噴水角度為40o,而各級道路之洗塵塵粒粒徑範圍為150μm以下。
不論道路等級或任一洗街車操作參數條件,均顯示街塵粒徑大小與洗塵效率是呈負相關,且粒徑小於75μm以下之坋土,其洗塵效率均可達80%以上,對於塵粒粒徑大於850μm以上之洗塵效率最高僅達40%,故洗街作業對於細微粒粒徑之洗塵效果較佳。
將實驗結果經無因次及迴歸分析後,則洗塵效率之經驗式可由下式表示:
(R=0.8276)
式中η為洗塵效率;U為車行速度(m/s);P為噴水水壓(N/m2);W為街塵負荷量(kg/m2);H為噴嘴離地高度(m);q為單位面積噴水量(m3/m2);θ為噴嘴噴水角度。故知,車行速度、街塵負荷量及噴嘴離地高度均與其之洗塵效率呈負相關,而洗街車之噴水水壓與噴水量增加時,可提昇街塵之洗塵效率,而所計算之模式值與實驗值之平均誤差百分比為0.28%。
在理想條件下,最佳之洗街車操作參數及條件分別為:車行速度10km/hr;噴水水壓2.0kg/cm2;噴嘴離地高度20cm;噴嘴噴水角度45o。然而,在實際應用上得是當時之道路髒污程度做適當調整,如噴嘴離地高度可調整為30公分,以避免道路顛坡或坑洞而殃及噴嘴,且與20公分之洗塵效率相較下,僅低2%左右,故原則上以30公分較佳。
本研究經實驗分析後,將可提供政府相關單位實施洗街作業,執行道路清洗頻率之依據,而所建立之洗街操作參數及設定條件,將做為相關單位未來設計洗街車之依據,所得之洗塵效率經驗式亦可做為實場之應用,以提昇街道洗塵效率。
Abstract
Abstract
This study investigated the optimal operating parameters on road dust removal by a flusher. It aimed at enhancing road flushing efficiency, analyzing particle size range, and establishing a flushing model. This study explored main roads by collecting road dusts in Kaohsiung metropolitan area in October 2001. The roads were classified by road dust loading (RDL) as follows: level A (minor, RDL<1g/m2), level B (normal, RDL=1~5g/m2), level C (abnormal, RDL=5~11g/m2), and level D (serious, RDL= 11~25g/m2). The frequency of road flushing was recommended as follows: Level D roads were flushed every day to maintain RDL&#8804;20g/m2. Level C roads were flushed every day, while level B roads were flushed every two days, to keep RDL&#8804;10g/m2. Level A roads were flushed every week to maintain RDL&#8804;5g/m2.
A pilot-scale road-flush testing field was designed for this particular study to investigate the influence of operating parameters on road flushing efficiency. The findings indicated that flat-fan type nozzle demonstrated higher flushing efficiency than hollow-cone type nozzle, and that the flushing speed and the distance of the nozzle away from the ground were correlated negatively with the road flushing efficiency, whereas the pressure of nozzle and RDL was correlated with the road flushing efficiency. The results suggested that, in the condition of eighty percent of flushing efficiency, the optimal operating parameters were flushing speed of 15km/hr, the pressure of nozzle of 2.0kg/cm2, the distance away from the ground of 30cm, the angle of 40o, and the particle size less than 150μm.
The results showed that particle size was correlated negatively with the road flushing efficiency under various operating parameters of flushing for different road levels. Beside, the road flushing efficiency was above 80% for silt with particle size less than 75μm. However, for particle size larger than 850μm, the road flushing efficiency was up to 40%. It concluded that the road flushing efficiency of fine particles was better than that of coarse particles.
After conducting dimensionless analysis and multiple regression analysis, the model of road flushing efficiency can be shown as follows,
(R=0.8276)
where η is the road flushing efficiency, U is the flusher speed (m/s), P is the water injecting pressure (N/m2), W is the road dust loading (kg/cm2), H is the distance of nozzle away from the ground (m), q is the amount of water per square meter (m3/m2), and θ is the angle of nozzle spread. In this model, RDL is negatively correlated with U, W and H. Moreover, the road flushing efficiency increases with water injection pressure and flow rate. On the basis of the above model, the average percentage of error was approximately 0.28%.
In this study, the optimal operating parameters of a flusher were that the flushing speed of 10km/hr, water injecting pressure of 2.0kg/cm2, the distance of nozzle away from the ground of 20cm, and the water injecting angle of 45o. However, depending upon the road cleanness levels, the optimal operating parameters could be varied. For instance, the distance of the nozzle away from the ground should be increased up to 30cm in order to prevent the damage from uneven roads or cavities. The experiments showed that 30cm of the height was a better option due to the road flushing efficiency was only 2% lower while compared with that of 20cm.
After the analysis of experimental data, the results can serve as the operation condition for road flushing practice as authorities concerned. The operating parameters proposed in this study could be useful for basic design of a high-efficiency flusher. Moreover, the model of road flushing efficiency can be further applied to predict the road flushing efficiency.
目次 Table of Contents
目 錄
謝誌……………………………………………………………….. I
中文摘要…………………………………………………………... II
英文摘要………………………………………………………….. IV
目錄………………………………………………………………... VII
表目錄……………………………………………………………... XI
圖目錄……………………………………………………………... XII
第一章 前言………………………………………………………. 1-1
1-1 研究緣起………………………………………………… 1-1
1-2 研究目的………………………………………………… 1-2
1-3 研究流程………………………………………………… 1-3
第二章 文獻回顧…………………………………………………. 2-1
2-1 街塵的來源及物化特性………………………………… 2-1
2-1-1 街塵的來源………………………………………. 2-1
2-1-2 街塵之物化特性…………………………………. 2-3
2-2 道路分級方式…………………………………………… 2-7
2-3 街塵採樣及分析方式…………………………………… 2-10
2-4 洗掃街方式……………………………………………… 2-13
2-4-1 掃街方式…………………………………………. 2-13
2-4-2 洗街方式…………………………………………. 2-15
2-5 洗街之影響參數………………………………………… 2-17
2-5-1 車輛流量與車行速度之影響……………….. 2-17
2-5-2 街塵負荷量………………………………….. 2-19
2-5-3 噴灑水量…………………………………….. 2-23
2-5-4 揚塵粒徑大小與氣象條件………………….. 2-26
2-6 街道揚塵與空氣品質之關係…………………………… 2-29
第三章 研究方法…………………………………………………. 3-1
3-1 道路分級方式之建立…………………………………… 3-1
3-1-1 街道之篩選與現場勘查…………………………. 3-1
3-1-2 街塵負荷量之量測………………………………. 3-4
3-2 街塵之粒徑分析………………………………………… 3-6
3-3 洗街模擬實驗…………………………………………… 3-9
3-3-1 實驗設備規劃……………………………………. 3-9
3-3-2 街塵準備…………………………………………. 3-16
3-3-3 影響參數實驗……………………………………. 3-16
3-4 品保與品管……………………………………………… 3-20
3-4-1 採樣地點之決定………………………………… 3-20
3-4-2 集塵袋之選擇……………………………………. 3-21
3-4-3 樣品攜帶及保存…………………………………. 3-21
3-4-4 負壓式吸塵器的吸塵時間測試…………………. 3-21
3-4-5 天平檢測與校正…………………………………. 3-22
第四章 結果與討論………………………………………………. 4-1
4-1 高雄市主要道路分級…………………………………… 4-1
4-2 鋪面道路之街塵負荷量………………………………… 4-4
4-3 洗街噴嘴型式之選擇…………………………………… 4-12
4-3-1 噴嘴型式…………………………………………. 4-12
4-3-2 噴嘴對洗塵效率之影響…………………………. 4-15
4-4 車行速度之影響………………………………………… 4-18
4-4-1 車行速度對洗塵效率之影響……………………. 4-18
4-4-2 車行速度對街塵粒徑之影響……………………. 4-19
4-5 噴水壓力之影響………………………………………… 4-26
4-5-1 噴水壓力對洗塵效率之影響……………………. 4-26
4-5-2 噴水壓力對街塵粒徑之影響……………………. 4-28
4-6 噴嘴離地高度之影響…………………………………… 4-33
4-6-1 噴嘴離地高度對洗塵效率之影響………………. 4-34
4-6-2 噴嘴離地高度對街塵粒徑之影響………………. 4-34
4-7 噴嘴噴水角度之影響…………………………………… 4-40
4-7-1 噴嘴噴水角度對洗塵效率之影響………………. 4-40
4-7-2 噴嘴噴水角度對街塵粒徑之影響………………. 4-42
4-8 洗塵模式之建立………………………………………… 4-46
4-9 洗掃街現況……………………………………………… 4-58
4-10洗街作業成本分析…………………………………….. 4-60
第五章 結論與建議………………………………………………. 5-1
5-1 結論……………………………………………………….. 5-1
5-2 建議……………………………………………………….. 5-3
參考文獻
附錄A 道路現勘及採樣紀錄表…………………………………. A-1
附錄B 行車速度與頻率之對照表………………………………. B-1
附錄C 各級道路96小時連續採樣紀錄表……………………… C-1
附錄D 總負荷量實驗數據彙整表………………………………. D-1
附錄E 粒徑分佈實驗數據彙整表………………………………. E-1表 目 錄
表2.1.1 街塵負荷量與平均粒徑分佈…………………………. 2-3
表2.2.1 都會區道路髒污分級標準……………………………. 2-8
表2.2.2 桃園縣市之道路髒污分級方式………………………. 2-9
表2.2.3 台北縣視判道路髒污分級情形………………………. 2-9
表2.4.1 各類型掃街車作業之優缺點…………………………. 2-15
表2.4.2 洗街車操作參數………………………………………. 2-16
表2.6.1 台中都會區街塵污染來源推估結果…………………. 2-31
表3.2.1 土壤粒徑分類表………………………………………. 3-7
表3.2.2 篩網篩號與孔徑對照表………………………………. 3-8
表3.3.1 實驗模擬場之設備型號及規格………………………. 3-15
表3.3.2 各級道路之街塵總負荷量及各階粒徑重……………. 3-17
表3.3.3 洗街模擬實驗操作參數及範圍………………………. 3-18
表4.1.1 高雄市區道路髒污分級標準…………………………. 4-2
表4.1.2 高雄市區主要道路髒污狀況分級表…………………. 4-3
表4.2.1 各級道路之單位面積街塵重量分佈範圍……………. 4-5
表4.4.1 各階編號及孔徑分佈範圍……………………………. 4-21
表4.8.1 參數操作條件及洗塵效率……………………………. 4-47
表4.8.2 本研究洗塵效率經驗式相關參數……………………. 4-50
表4.8.3 不同操作條件之洗塵效率靈敏度分析………………. 4-54
表4.9.1 洗掃街車之操作現況…………………………………. 4-59



圖 目 錄
圖1.3.1 研究流程圖……………………………………………….. 1-4
圖2.1.1 都會區鋪面道路街塵沉降即移除之可能途徑………….. 2-2
圖2.3.1 U.S. EPA AP-42之鋪面道路街塵採樣位置圖………….. 2-11
圖2.5.1 街塵沉降及累積對時間之關係圖……………………….. 2-21
圖2.5.2 擴散雙層中雙極分子吸引示意圖……………………….. 2-24
圖2.5.3 道路街塵顆粒再揚起之力學解析示意圖……………….. 2-25
圖3.1.1 本研究實驗流程圖……………………………………….. 3-2
圖3.1.2 高雄市各行政區位置圖………………………………….. 3-3
圖3.1.3 街塵採樣位置及範圍示意圖…………………………….. 3-5
圖3.3.1 洗街車模擬設備設計圖………………………………….. 3-10
圖3.3.2 洗街車模擬設備圖……………………………………….. 3-11
圖3.3.3 模擬洗街道路實驗區域示意圖………………………….. 3-14
圖3.3.4 參數示意圖……………………………………………….. 3-19
圖3.4.1 負壓式吸塵器對吸塵效率……………………………….. 3-22
圖4.2.1 各級道路之單位面積街塵重量分佈…………………….. 4-5
圖4.2.2 國內外各都會區鋪面道路街塵負荷量………………….. 4-7
圖4.2.3 各級道路之街塵負荷量隨時間之變化情形…………….. 4-9
圖4.2.4 單位時間對街塵負荷量之影響………………………….. 4-11
圖4.3.1 噴嘴型式………………………………………………….. 4-13
圖4.3.2 噴水樣式………………………………………………….. 4-14
圖4.3.3 以不同形式的噴嘴測試行車速度對洗塵效率之影響….. 4-16
圖4.3.4 以不同形式的噴嘴測試水壓對洗塵效率之影響……….. 4-17
圖4.4.1 洗街車速與洗塵效率之關係…………………………….. 4-20
圖4.4.2 不同車速對街塵粒徑洗塵效率之影響………………….. 4-23
圖4.5.1 噴水壓力與洗塵效率之關係…………………………….. 4-27
圖4.5.2 顆粒受力後之解析示意圖……………………………….. 4-29
圖4.5.3 不同噴水壓力對街塵粒徑洗塵效率之影響…………….. 4-30
圖4.6.1 噴嘴離地高度與洗塵效率之關係……………………….. 4-35
圖4.6.2 不同噴嘴離地高度對街塵粒徑洗塵效率之影響……….. 4-37
圖4.7.1 噴嘴噴水角度與洗塵效率之關係……………………….. 4-41
圖4.7.2 不同噴嘴噴水角度對街塵粒徑洗塵效率之影響……….. 4-43
圖4.8.1 本研究洗塵效率推估值與實驗值之比對……………….. 4-53
圖4.8.2 噴水水壓對洗塵效率之靈敏度分析…………………….. 4-56
圖4.8.1 車行速度對洗塵效率之靈敏度分析…………………….. 4-56
圖4.8.1 噴嘴離地高度對洗塵效率之靈敏度分析……………….. 4-57
圖4.8.1 噴嘴噴水角度對洗塵效率之靈敏度分析……………….. 4-57
參考文獻 References
參考文獻
A.S. Al-Chalabi and D. Hawker, “Response of Vehicular Lead to the Presence of Street Dust in the Atmospheric Environment of Major Roads”, Science Total Environment, Vol.206, pp.195-202, 1997.
A. Venkatram, D. Fitz, K. Bumiller, S. Du, “Using a Dispersion Model to Estimate Emission Rates of Particulate Matter from Paved Roads”, Atmospheric Environment, Vol.33, pp.1093-1102, 1999.
A. Venkatram, “Response to Comments by Nicholson.A critique of Empirical Emission Factor Models: A Case Study of the AP-42 Model for Estimating PM10 Emissions from Paved Roads”, Atmospheric Environment, Vol.34, pp.187, 2001.
B.M. Kim, R. Lewis, H. Hogo and J.C. Chow, ”Source Apportionment by Chemical mass Balance: a Comparison Between Measured Source Profiles and SAFER model estimated source profiles”, In Transactions, PM10 Standards and Nontraditional Particulate Controls (edited by Chow J. C. and Ono D. M.), Air Waste Management Association, Pittsburgh, Pennsylvania, pp.311-323, 1992.
C. Claiborn, A. Mitra, G. Adams, L. Bamesberger, G. Allwine, R. Kantamaneni, B. Lamb and H. Westberg, “Evaluation of PM10 Emission rates from Paved and Unpaved Roads Using Tracer Techniques”, Atmospheric Environment, Vol.29, pp.1075-1089, 1995.
C. Cowherd, p. Englehart, G.E. Muleski, J.S. Kensey, “Harzardous Waste TSDF Fugitive Particulate Matter Air Emission Guidance Document”, U.S. EPA, 1989.
Dames and Moore, “Silt Loading Measurements for Clark County Paved Roads”, Final Report for Clark County Regional Transportation Commission, 1999.
D.R. Fitz, “PM10 Efficient Street Sweeper Evaluations”, Phase I & II Report for the South Coast Air Quality Management District(SCAQMD) Contract No:99106, California, 1999.
DRI, “Fugitive Dust and Other Source Contributions to PM10 in Navada’s Las Vegas Valley”, Final Report for Clark County Department of Comprehensive Planning, Vol.II, 1996.
D. Richard, D. Safried, “Guideline for Development of Control Stategies in Areas with Fugitive Dust Problem”, U.S. EPA, 1977.
E.D. Miguel, J.F. Llamas, E. Chacon, T. Berg, S. Larssen, O. Royset, M. Vadset, “Origin and Patterns of Distribution of Trace Elements in Street Dust: Unleaded Petrol and Urban Lead”, Atmospheric Environment, Vol.31, No.17, pp.2733-2740, 1997.
E.M. Gregory, C. Chatten, “Particulate Emission Measurements from Controlled Construction Activities”, U.S. EPA, EPA-600/R-01-031, 2001.
E.Y. Wang, R.D. Willis, T.J. Buckley, G.G. Rhoads, and P.J. Lioy, “The Relationship Between the Dust Lead Concentration and the Particle Sizes of Household Dusts Collected in Jersey City Residences,” Appl. Occup. Environ. Hyg., Vol.11, No.3,pp.199-206, 1996.
G.C. Fang, C.N. Chang, Y.S. Wu, C.C. Cheng, S.C. Chen, S.C. Chang, “Particle and Composition Analysis of Road Dust during Washing Process in Traffic Area of Central Taiwan, Taichung”, Seventeenth Air Pollution Control Technology Conference, Yunlin, 2000.
G.H. McTainsh, W.G. Nickling, A.W. Lynch, “Dust Deposition and Particle Size in Mali, West Africa”, Catena, Vol.29, pp.307-322, 1997.
G.R. Gass, G.J. Mcrae, “Source-Receptor Reconciliation of Routine Air Monitoring Data for Trace Metals: An Emission Inventory Assisted Approach”, Environment Science Technology, Vol.17, No.3, pp.129-139, 1983.
H.E. Hesketh and F.L. Cross, “Fugitive Emissions and Controls”, Ann Arbor Science Co., New York, 1982.
H. Kuhns, V. Etyemezian, D. Landwehr, C. MacDougall, M. Pitchford, and M. Green, “Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER): A New Approach to Infer Silt Loading on Roadways”, Atmospheric Environment, Vol.35, pp.2815-2825, 2001.
J.C. Chow, C.S. Liu, J. Cassmassi, J.G. Watson, Z. Lu and L.C. Pritchett, “A Neighborhood-Scale Study of PM10 Source Contributions in Rubidoux”, Atmospheric Environment 26A, pp.693-706, California, 1992a.
J.C. Chow, J.G. Watson, D.H. Lowenthal, C.A. Frazier, B.A. Hinsvark, L.C. Pritchett and G.R. Neuroth, “Wintertime PM10 and PM2.5 Chemical Compositions and Source Contributions in Tucson”, In Transactions, PM10 Standards and Nontraditional Particulate Controls (edited by Chow J. C. and Ono D. M.), Arizona. Air Waste Management Association, Pittsburgh, pp.311-323, Pennsylvania, 1992b.
J.C. Chow, J.G. Watson, D.H. Lowenthal, P.A. Soloman, K. Magliano, S. Ziman and L.W. Richards, “PM10 source apportionment in Calfornia’s San Joaquin Valley”, Atmospheric Environment 26A, pp.3335-3354. 1992c.
J.C. Chow, J.G. Watson, R.T. Egami, C.A. Frazier, Z. Lu, ”Evaluation of Regenerative-air Vacuum Street Sweeping on Geological Contributions to PM10”, Journal Air Waste Management Association, Vol.40, No.8, pp.1134-1142,1990.
J.C. Chow, J.G. Fairley, J.G. Watson, DeMandel R. Egami, E.M. Fujita, D.H. Lowenthal, Z. Lu, C.A. Frazier, G. Long, J. Cordova, ”Source Apportionment of Wintertime PM10 at San Jose,Calif.”, Journal Environment Engineering, Vol.121, No.5, pp.378-387, 1995.
J.G. Watson, J.C. Chow and C.V. Mathai, “Receptor Models in Air Resources Management: a Summary of the APCA International Specialty Conference”, Journal Air Waste Management Association, Vol.39, pp.419-426, 1989.
J.G. Waston, “Long-term Efficiencies of Dust Suppressant to Reduce PM10 Emissions from Unpaved Roads,” Journal Air Waste Management Association, Vol.49, pp.3-16, 1999.
J. Keller, R. Lamprecht, “Road Dust as an Indicator for Air Pollution Tensport and Deposition: An Application of SPOT Imagery”, Remote Sens. Environ., Vol.54, pp.1-12, 1995.
K. Axetell, J. Zell, “Control of Reentrained Dust from Paved Streets”, EPA-907/9-77-007, U.S. EPA, Region, Kansas City, MO, 1977.
K.W. Nicholson, “A Critique of Empirical Emission Factor Models: A Case study of the AP-42 Model for Estimating PM10 Emissions from Paved Roads”, Atmospheric Environment, Vol.34, pp.185-186, 2001.
L.Y. Chan, W.S. Kwok, “Vertical Dispersion of Suspended Particulates in Urban Area of Hong Kong”, Atmospheric Environment, Vol.34, pp.4403-4412, 2000.
M.C. Butler Ellis, C.R. Tuck, “How Adjuvants Influence Spray Formation with Different Hydraulic Nozzles”, Crop Protection, Vol.18, pp.101-109, 1999.
M.M. Raile, “Characterization of Muddirt Carryout onto Paved Roads from Construction and Demolition Activities”, U.S. EPA Project Summary, EPA/600/SR-95/171, 1996.
M.S. Akhter, I.M. Madany, “Metals in Street and House Dust in Bahrain”, Water Air and Soil Pollution, Vol.66, pp.111-119, 1993.
N.A.H. Janssen, D.F.M. Van Mansom, K.V. D. Jagt, H. Harssema, G. Hoek, “Mass Concentration and Elemental Composition of Airborne Particulate Matter as Street and Background Locations”, Atmospheric Environment, Vol.31, No.8, pp.1185-1193, 1997.
P.E. Rasmussen, K.S.Subramanian, B.J. Jessiman, “A Multi-element Profile Housedust in Relation to Exterior Dust and Soils in the City of Ottawa, Canada”, The Science of the Total Environment, Vol.267, pp.125-140, 2001.
P.G. Harvey, M.W. Hamlin, R. Kumar, J. Morgan, A. Spurgeon, T. Davies, “Blood Lead, Behavior and Intelligence Test Performance in Young Children”, in Heavy Metals in the Environment, International Conference, Athens (edited by Lekkas, T.D.), Vol.1, pp.48-50, CEP Consultants, Edinburgh , 1985.
R.A. Bagnold, “Wind Tunnel Observation”, JAPASA, 1977.
R.A. Zimmer, W.K. Reeser and P. Cummins, “Evaluation of PM10 Emission Factors for Paved Streets”, In Transactions, PM10 Standards and Nontraditional Particulate Controls (edited by Chow J. C. and Ono D. M.), Air Waste Management Association, Pittsburgh, Pennsylvania, pp.311-323, 1992.
R.J. Seibel, “Dust Control at a Transfer Point Vsing Fram and Water Sprays”, Department of the Interior, Bureau of Mines. Pub. No. TPR97, 1976.
R. Kantamaneni, G. Adams, L. Bamesberger, E. Allwine, H. Westberg, B. Lamb and C. Claiborn, “The Measurment of Roadway PM10 Emission Rates Using Atmospheric Tracer Ratio Techniques”, Atmospheric Environment, Vol.30, No.24, pp.4209-4223, 1996.
R.L. Bornschin, P.A. Succop, P.B. Hammond, “Exterior Surface Dust Lead, Interior House Dust Lead and Childhood Exposure in Urban Environment”, Trace Substance Environment Health, Vol.20, pp.322-332, 1986.
R.L. Radkey and P.B. MacCread, “Use of Porous Wind Fences to Reduce Particulate Emission at the Mohave Generating Station”, AV-R-9563, AeroVironment, Inc., Pasadena, California, 1980.
R.M. Barnes, “Childhood Soil Ingestion: How Much Dirt do Kids Eat?”, Analysis. Chemistry., Vol.62, pp.1023A-1033A, 1990.
R.M. Harrison, D.J.T. Smith, C.A. Pio, L.M. Castro, “Comparative Receptor Modeling Study of Airborne Particulate Pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan)”, Atmospheric Environment, Vol.31, No.20, pp.3309-3321, 1997.
R. Pitt, “Demonstration of Nonpoint Pollution Abatement Through Improved Street Cleaning Practices”, EPA-600/2-79-161, U.S. Environmental Protection Agency, Cincinnati, OH. August, 1979.
S.M. Charleswoth, J.A. Lees, “The Application of Some Mineral Magnetic Measurements and Heavy Metal Analysis for Characterizing Fine Sediments in Urban Catment, Coventry, UK”, Journal Applied Geophysics, Vol.48, pp.113-125, 2001.
S. Xie, J.A. Dearing, J.F. Boyle, J. Bloemendal, A.P. Morse, “Association between Magnetic Properties and Element Concentrations of Liverpool Street Dust and its Implication”, Journal of Applied Geophysics, Vol.48, pp.83-92, 2001.
S. Xie, J.A. Dearing, J. Bloemendal, J.F. Boyle, “Association between the Organic Matter Content and Magnetic Properties in the Street Dust, Liverpool, UK”, The Science of the Total Environment, Vol.241, pp.204-214, 1999.
U.S. EPA, “Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources”, AP-42, 4th Ed., 1985.
U.S. EPA, “Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources”, AP-42, 5th Ed., 1995.
U.S. EPA, 1993 “Emission Factors Documentation for AP-42, Section 13.2.1: Paved Roads”, Report prepared for US EPA, 1993.
Washington State Department of Ecology “Air Quality Program: Spokane PM10 Attainment Plan”, Appendix H and K, WSDOE, Olympia, Washington, 1993.
X. Ji, D. Jiang, S. Fei, H. Yuan, P. He, B. Ye, Z. Lei and C. Feng, “Road Dust Emission Inventory for the Metropolitan Area of Shanghai City”, Atmospheric Environment, Vol.27, No.11, pp.1735-1741, 1993.
X. Li, C.S. Poon, P.S. Liu, “Heavy Metal Contamination of Urban Soils and Street Dusts in Hong Kong,” Applied Geochemistry, Vol.16, pp.1361-1368, 2001.
Y. Kousaka, K. Okuyama and Y. Endo, “Re-entrainment of Small Aggregate Particles from a Plane Surface by Air Stream”, Journal of Chemical Engineering of Japan, Vol.13, No.2, pp.143-147, 1980.
工程顧問公司,”加強街道清掃計畫成效評估計畫”,高雄市政府環境保護局,1997。
工程顧問公司,”台南市委託民間辦理加強街道洗掃計畫”,台南市環境保護局,1997。
工程顧問公司,”台北縣空氣污染物排放減量規劃與管制綜合計畫”,台北縣環境保護局,1999。
工程顧問公司,”台北縣全面清街道改善空氣品質試辦計畫”,台北縣環境保護局,2000。
王竹方、蔡素芬、賴宏志、鄭曼婷,”舖面道路街塵之元素組成及其粒徑分佈”,第十五屆空氣污染控制技術研討會,中壢,1998。
江舟峰、楊錫賢、張皇珍、戴建安,”都會區街塵清洗成效評估”,第八屆氣膠科技研討會,新竹,2000。
行政院環境保護署,”街道洗掃街作業方案調查評估及規劃專案研究計畫”,期末報告,1995。
林進宏、陳宏碩、蕭麟壽、藍文農、賴俊成、劉志聖、吳典祝、張章堂,”各種粒徑粉塵逸散與措施評估之研究”,第八屆氣膠科技研討會,新竹,2000。
林煜棋,”鋪面道路車行揚塵特性與排放係數之建立”,國立中興大學環境工程研究所碩士論文,1999。
吳啟文,”台灣中部都會區細懸浮微粒粒徑分佈之污染物特性分析”,國立中央大學環境工程研究所碩士論文,1996。
倪佩貞、劉國棟、方淑慧,”台灣地區空氣污染物排放資料庫之建立”,第十七屆空氣污染控制技術研討會,雲林,2000。
章裕民、王旭淵、黃志賢,”大型洗掃街車對街塵清除效益之研究”,第十六屆空氣污染控制技術研討會,台南,1999a。
章裕民、張天晉、黃志賢,”噴灑水措施對逸散性粒狀物防制效益之研究”,第十六屆空氣污染控制技術研討會,台南,1999b。
章裕民、劉恕昭、黃志賢,”逸散粒狀噴灑水與防塵藥劑之施用效益比較研究”,第十七屆空氣污染控制技術研討會,雲林,2000a。
章裕民、劉恕昭、黃志賢,”裸露地化學藥劑防塵效率之研究”,第十七屆空氣污染控制技術研討會,雲林,2000b。
張喬維、莊秉潔、杜佳潁,”中部地區懸浮微粒總量管制減少策略評估”,第十六屆空氣污染控制技術研討會,台南,1999。
黃益助、謝金霖、陳瑞仁、徐誌宏、陳冠洲,”地面塵土中芳香烴類污染物與金屬成分之分佈特性探討”,第十七屆空氣污染控制技術研討會,雲林,2000。
黃志賢,”逸散性粒狀物控制效率及其應用於管制策略之研究”,國立台北科技大學土木與防災研究所碩士論文,2000。
蔣本基、張勝祺、杜悅元,“空氣污染受體模式及危險性評估在空氣品質管理上的應用研究”,行政院環境保護署報告,EPA-83-E3F1-09-01,1994。
蔣本基、張子琦,”懸浮微粒污染源與氣象因子相關性之研究”,第十三屆空氣污染研討會,pp.557-566,1996。
蔣本基,“臺灣北、中部地區受體模式建立與應用研究(一)”,行政院環境保護署,1993。
蔡春進、江志峰、繆敦耀、彭世邦,“都會區逸散性粒狀物量測及管制措施之研究”,行政院環境保護署,EPA-86-FA42-09-90,1997。
蔡春進、繆敦耀、邱信夫、林采吟、鍾俊彬、黃政雄、王斯厚,”本土化逸散性粉塵控制技術調查研究”,第十五屆空氣污染控制技術研討會,中壢,1998。
蔡春進、繆敦耀、簡聰智、陳泰任,”裸露地逸散性粒狀空氣污染物的控制技術研究”,第十六屆空氣污染控制技術研討會,台南,1999。
鄭曼婷,王竹方,蔣勝吉,林煜棋,賴宏志,蔡素芬,”台中市道路揚塵特性及減量評估”,台中市環境保護局,1998。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code