Responsive image
博碩士論文 etd-0829107-122607 詳細資訊
Title page for etd-0829107-122607
論文名稱
Title
水環境因子對含氮多環芳香烴與腐植酸結合係數之影響
pH and ionic strength effects on the binding constant between N-PAHs and humic acid
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-16
繳交日期
Date of Submission
2007-08-29
關鍵字
Keywords
離子強度、多環芳香烴、結合係數
ionic strength, binding constant, PAHs
統計
Statistics
本論文已被瀏覽 5742 次,被下載 1872
The thesis/dissertation has been browsed 5742 times, has been downloaded 1872 times.
中文摘要
本研究以螢光衰減法針對不同離子強度下的腐植酸(LHA)和含
氮的多環芳香烴(benzo(h)quinoline,簡稱BHQ)的結合係數進行量
測。BHQ 是一種鹼性多環芳香烴,在中及高pH 值下以BHQ 為優勢
物種,但在低pH 值下則轉變成為benzo(h)quinolinium(簡稱BHQ+)。
溶液中加入鹽類後,高及中pH 值下因為陽離子和LHA 分子上的負
電官能基作用而造成LHA 分子捲曲變形而使得KDOC 值的下降,且不
同陽離子下,電荷密度越大會造成KDOC 衰減程度越大;而對不同陰
離子,則會因為陽離子種類對LHA 負電官能基的親合力大小而有所
影響;低pH 值下則會因為陽離子和LHA 分子上的負電官能基結合
減少了LHA 與BHQ+結合的機會,而陽離子所提供的結合位基越多,
使得KDOC 衰減程度的越大。
Abstract
This study investigates the influence of ionic strength on the binding
constant (KDOC) between benzo(h)quinoline (BHQ) and LHA by using
fluorescence quenching method. Being a basic polycyclic aromatic
hydrocarbon, BHQ is the dominated solute as the solution’s pH value is
higher than BHQ’s pKb. In contrast, BHQ+ is the major species as the
solution’s pH value is lower than BHQ’s pKb. In a salty neutral or basic
LHA solution, the cation will bind with the acidic functional groups of
LHA, then the conformation of LHA would be coiled up to be small in
size. Due to that, leading to the decrease of the corresponding BHQ’s
KDOC. Furthermore, the charge density of cation is an important factor in
control of the variation of BHQ’s KDOC. The lower charge density of
cation is, the less BHQ’s KDOC varied. Besides, SO4
2- may suppress the
binding affinity between Na+ and the acidic function groups of LHA, so
that lower variation of BHQ’s KDOC was observed than that of Cl- in a
Na+ contained LHA solution. In an acidic solution, cation will also bind
with the acidic functional groups of LHA, leading to the decrease of the
binding sites of BHQ+ on LHA and the corresponding BHQ+’s KDOC.
Besides, Mg2+ could provide more binding sites for the acidic functional
groups of LHA than Na+, so that the variation of BHQ+’s KDOC with
Mg2+ addition is higher than that with Na+ addition.
目次 Table of Contents
中文摘要..................................................................................................Ⅰ
英文摘要.................................................................................................. II
目錄..........................................................................................................III
圖目錄.......................................................................................................V
表目錄......................................................................................................IX
附表目錄...................................................................................................X
第一章 前言……………………………………………………………..1
第二章 文獻回顧 …………………………………………….………...3
2-1 溶解性有機物.................................................................................3
2-2 腐植質.............................................................................................4
2-3 疏水性有機污染物.........................................................................9
2-4 多環芳香烴化合物.......................................................................10
2-5 水環境因子對HOPs吸附行為之影響.........................................14
第三章 實驗材料及方法 ……………………………………………..20
3-1 實驗材料.......................................................................................20
3-2 實驗方法.......................................................................................21
3-2-1 實驗方法的選用....................................................................21
IV
3-2-2 螢光衰減法原理概述............................................................24
3-2-3 螢光理論校正公式................................................................27
3-3 實驗步驟.......................................................................................28
第四章 結果與討論………………………... ………………………....31
4-1 螢光衰減法之建立.......................................................................31
4-1-1 螢光衰減法之適用性............................................................31
4-2 離子強度效應對BHQ-LHA之KDOC的影響.................................33
4-2-1 不同陽離子對BHQ-LHA之KDOC的影響.............................42
4-2-2 不同陰離子對BHQ-LHA之KDOC的影響.............................64
第五章 結論與建議……………………………………………………70
5-1 結論...............................................................................................70
5-2 建議...............................................................................................72
參考文獻……………………………………………………………......73
附錄……………………………………………………………………..79
V
圖 目 錄
圖2-1、腐植質於處理程序下所得不同產物圖解.....................................5
圖2-2、腐植質似微胞模型.........................................................................7
圖2-3、(a)電解質加入造成高分子收縮之示意圖;(b)pH值及氯化鈉濃
度變化下,HA及FA之分子結構示意圖.................................................18
圖3-1、動態及靜態衰減示意圖 .............................................................26
圖3-2、內吸收效應校正公式中部分與石英試樣槽之參數示意圖.......26
圖4-1、BHQ-LHA結合實驗之Stern-Volmer plot ...................................32
圖4-2、在高pH值下BHQ-LHA結合實驗中 (a) F0、FHA及f之螢光強度
與Na2SO4 離子強度間之關係;(b)BHQ-LHA結合係數變化百
分比和Na2SO4 離子強度之關係。…………………………..35
圖4-3、中pH值下BHQ-LHA結合實驗中(a)F0、FHA及f之螢光強度和
Na2SO4 離子強度間之關係;(b)BHQ-LHA結合係數變化量和
Na2SO4離子強度之關係。…………………………………....37
圖4-4、在高pH值及中pH值下BHQ-LHA結合係數變化百分比和
Na2SO4 離子強度之關係。…………………………………..39
圖4-5、低pH值下BHQ-LHA結合實驗中(a)F0、FHA及f之螢光強度和
Na2SO4 離子強度間之關係;(b)BHQ-LHA結合係數變化量和
Na2SO4 離子強度之關係。…………………………………41
VI
圖4-6、在高pH值下BHQ-LHA結合實驗中(a)F0、FHA及f之螢光強度與
MgSO4 離子強度間之關係;(b)BHQ-LHA結合係數變化量和
MgSO4 離子強度之關係。………………………..................44
圖4-7、在高pH值下,BHQ-LHA結合係數變化百分比和Na2SO4 及
MgSO4 離子強度之關係。………………………………..…45
圖4-8、在中pH值下BHQ-LHA結合實驗中螢光強度(a)F0、FHA及f之螢
光強度與MgSO4 離子強度間之關係;(b)BHQ-LHA結合係數變
化量和MgSO4 離子強度之關係。……………………………47
圖4-9、在中pH值下,BHQ-LHA結合係數變化百分比和Na2SO4 及
MgSO4 離子強度之關係。…………………………………..48
圖4-10、在低pH值下BHQ-LHA結合實驗中(a)F0、FHA及f之螢光強度
與MgSO4 離子強度間之關係;(b)BHQ-LHA結合係數變化量
和MgSO4離子強度之關係。………………………………..50
圖4-11、低pH值下BHQ-LHA結合係數變化百分比和Na2SO4 及MgSO4
離子強度之關係。......................................................................51
圖4-12、在高pH值下BHQ-LHA結合實驗(a)F0、FHA及f之螢光強度與
MgCl2 離子強度間之關係;(b)BHQ-LHA結合係數變化量和
MgCl2 離子強度之關係。........................................................53
圖4-13、在高pH值下BHQ-LHA結合實驗中(a)F0、FHA及f之螢光強度
VII
與NaCl離子強度間之關係;(b)BHQ-LHA結合係數變化量和
NaCl離子強度之關係。............................................................54
圖4-14、在高pH值BHQ-LHA結合係數變化百分比和MgCl2 及NaCl離
子強度之關係。..........................................................................55
圖4-15、在中pH值下BHQ-LHA結合實驗中(a)F0、FHA及f之螢光強度
與MgCl2 離子強度間之關係;(b)BHQ-LHA結合係數變化量
和MgCl2離子強度之關係。......................................................57
圖4-16、在中pH值下BHQ-LHA結合實驗中(a)F0、FHA及f之螢光強度
與NaCl離子強度間之關係;(b)BHQ-LHA結合係數變化量和
NaCl離子強度之關係。............................................................58
圖4-17、在中pH值下BHQ-LHA結合係數變化百分比和MgCl2 及NaCl
離子強度之關係。....................................................................59
圖4-18、在低pH值下BHQ-LHA結合實驗中F0、FHA及f之螢光強度與
MgCl2 離子強度間之關係。....................................................62
圖4-19、在低pH值下BHQ-LHA結合實驗中F0、FHA及f之螢光強度與
NaCl離子強度間之關係。........................................................62
圖4-20、不同離子強度下螢光物種BHQ+之三為螢光圖譜…………...63
圖4-21、在高pH值下BHQ-LHA結合係數變化百分比和MgCl2 及
MgSO4 離子強度之關係。......................................................65
VIII
圖4-22、在中pH值下BHQ-LHA結合係數變化百分比和MgCl2 及
MgSO4 離子強度之關係。......................................................66
圖4-23、在高pH值下BHQ-LHA結合係數變化百分比和Na2SO4 及
NaCl離子強度係。....................................................................67
圖4-24、在中pH值BHQ-LHA結合係數變化百分比和Na2SO4 及NaCl
離子強度之關係。....................................................................68
IX
表 目 錄
表2- 1、常見31 種PAHs 結構、物性、化性及生物特性列表………………..12
表2- 1、常見31 種PAHs 結構、物性、化性及生物特性列表(續)……………13
X
附表目錄
附錄一、圖4-1 實驗結果(benzo(h)quinoline-LHA);IS=0mM……………….…...80
附錄二、圖4-1 實驗結果(benzo(h)quinoline-LHA);IS=0.25mM…………….…..81
附錄三、圖4-1 實驗結果(benzo(h)quinoline-LHA);IS=1mM…………….………82
附錄四、圖4-2、4-4、4-7 及4-23 中Na2SO4 離子強度效應實驗結果…….……83
附錄四、圖4-2、4-4、4-7 及4-23 中Na2SO4 離子強度效應實驗結果(續)……....84
附錄五、圖4-3、4-4、4-9 及4-24 中Na2SO4 離子強度效應實驗結果……….…85
附錄五、圖4-3、4-4、4-9 及4-24 中Na2SO4 離子強度效應實驗結果(續)...........86
附錄六、圖4-5 及4-11 中Na2SO4 離子強度效應實驗結果………………………87
附錄六、圖4-5 及4-11 中Na2SO4 離子強度效應實驗結果(續)………………….88
附錄七、圖4-6、4-7 及4-21 中MgSO4 離子強度效應實驗結果…………………89
附錄八、圖4-8、4-9 及4-22 中MgSO4 離子強度效應實驗結果……………...…90
附錄八、圖4-8、4-9 及4-22 中MgSO4 離子強度效應實驗結果(續)………..…..91
附錄九、圖4-10 及4-11 中MgSO4 離子強度效應實驗結果…………………......92
附錄九、圖4-10 及4-11 中MgSO4 離子強度效應實驗結果(續)……………..…..93
附錄十、圖4-12、4-14 及4-21 中MgCl2 離子強度效應實驗結果…………..…..94
附錄十、圖4-12、4-14 及4-21 中MgCl2 離子強度效應實驗結果(續)………...…95
附錄十一、圖4-13、4-14 及4-23 中NaCl 離子強度效應實驗結果……………….96
附錄十一、圖4-13、4-14 及4-23 中NaCl 離子強度效應實驗結果(續)……….....97
附錄十二、圖4-15、4-17 及4-22 中MgCl2 離子強度效應實驗結果……….…...98
附錄十二、圖4-15、4-17 及4-22 中MgCl2 離子強度效應實驗結果.(續)……......99
附錄十三、圖4-16、4-17 及4-24 中NaCl 離子強度效應實驗結果………….…100
附錄十三、圖4-16、4-17 及4-24 中NaCl 離子強度效應實驗結果(續)…….…..101
附錄十四、圖4-18 中MgCl2 離子強度效應實驗結果…………………………...102
附錄十四、圖4-18 中MgCl2 離子強度效應實驗結果(續)………………………103
XI
附錄十五、圖4-19 中NaCl 離子強度效應實驗結果…………………………….104
附錄十五、圖4-19 中NaCl 離子強度效應實驗結果(續)….…………………….105
參考文獻 References
Backhus, D. A. and Gschwend, P. M. (1990) Fluorescent polycyclic aromatic
hydrocarbons as probes for studying the impact of colloids on pollutant transport
in groundwater. Environ. Sci. Technol. 24, 1214-1223.
Brunk, B. K., Jirka, G. H. and Lion, L. W. (1997) Effects of salinity changes and the
formation of dissolved organic matter coatings on the sorption of phenanthrene:
Implications for pollutant trapping in estuaries. Environ. Sci. Technol. 31,
119-125.
Carter, C. W. and Suffet, I. H. (1982) Binding of DDT to dissolved humic materials.
Environ. Sci. Technol., 16, 735-740.
Chen, S., Inskeep, W. P., Williams, S. A. and Callis, P. R. (1992) Complexation of
1-naphthol by humic and fulvic acids. Soil Sci. Soc. Am. J., 56, 67-73.
Chen, S., Inskeep, W. P., Williams, S. A. and Callis, P. R. (1994) Fluorescence
lifetime measurements of fluoranthere, 1-naphthol, and napropamide in the
presence of dissolved humic acid. Environ. Sci. Technol., 28, 1582-1588.
Chiou, C. T., Malcolm, R. L., Birnton, T. I. and Kile, D. E. (1986) Water solubility
enhancement of some organic pollutants and pesticides by dissolved humic and
fulvic acids. Environ. Sci. Technol., 20, 502-508.
Chiou, C. T., Schmedding, D. W. and Manes, M. (1982) Partitioning of organic
compounds in octanol-water systems. Environ. Sci. Technol. 16, 4-10.
Chiou, C. T., Shoup, T. D. and Poter, P. E. (1985) Mechanistic roles of soil humus and
minerals in the sorption of nonionic organic compounds from aqueous and
organic solutions. Org. Geochem., 8, 9-14.
Danielsen, K. M., Chin, Y-P, Buterbaugh, J. S., Gustafson, T. L. and Traina, S. J.
(1995) Solubility enhancement and fluorescence quenching of pyrene by humic
substances: The effect of dissolved oxygen on quenching processes. Environ. Sci.
Technol., 29, 2162-2165.
Davis, J. A. and Gloor, R. (1981) Adsorption of dissolved organics in lake water by
aluminum oxide. Effect of molecular weight. Environ. Sci. Technol. 15,
1223-1229.
Dzombak, D. A. and Luthy, R. G. (1984) Estimating adsorption of polycylic aromatic
74
hydrocarbons on soils. Soil Sci., 137, 292-308.
Edwards, N. T. (1983) Polycyclic aromatic hydrocarbons (PAH's) in the terrestrial
environment - a review. J. Environ. Qual. 12, 427-441.
Engebretson, R. R. and von Wandruszka, R. (1994) Microorganization in dissolved
humic acids. Environ. Sci. Technol. 28, 1934-1941.
Engebretson R. R., von Wandruszka, R. (1998) Kinetic aspects of cation enhanced
aggregation in aqueous humic acids. Environ. Sci. Technol., 32, 488–493.
Futoma, D. J., Smith, S. R., Smith, T. E. and Tanaka, J. (1981) The analysis of
polycyclic aromatic hydrocarbons in water system, CRC Press, Florida.
Gauthier, T. D., Shane, E. C., Guerin, W. F., Seitz, W. R. and Grant, C. L. (1986)
Fluorescence quenching method for determining equilibrium constants for
polycyclic aromatic hdyrocarbons binding to dissolved humic matterials. Environ.
Sci. Technol., 20, 1162-1166.
Gauthier, T. D., Seitz, W. R. and Grant, C. L. (1987) Effects of Structural and
compositional variations of dissolved humic materials on Pyrene Koc values.
Environ. Sci. Technol., 21, 243-238.
Gustafsson, O., Nilsson, N. and Bucheli, T. D. ( 2001) Dynamic colloid water
partitioning of pyrene through a coastal Baltic spring bloom. Environ. Sci.
Technol., 35, 4001–4006.
Herbert, B. E., Bertsch, P. M. and Novak, J. M. (1993) Pyrene sorption by
water-soluble organic carbon. Environ. Sci. Technol. 27, 398-403.
Johnson, W. P and Amy, G. L.(1995)Facilitated transport and enhanced desorption of
polycyclic aromatic hydrocarbons by nature organic matter in aquifer sediments.
Environ. Sci. Technol. 29,807-817.
Jones, K. D. and Tiller, C. L. (1999) Effect of dissolved oxygen and light exposure on
determination of Koc values for PAH using fluorescence quenching. Environ. Sci.
Technol., 31, 424-429.
Karthikeyan, K. G. and Chorover, J. (2002) Humic acid complexation of basic and
neutral polycyclic aromatic compounds. Chemosphere, 48, 955-964.
Kuo, L. J. and Lee, C. L. (2005) Stage change in binding of pyrene to selected humic
substances under different ionic strengths. Environ. Toxicol. Chem., 24, 58-66.
Kuo, L. J., Lee C. L. and Chen B.F., Variation of sorption partition coefficients of
75
HOC with aquatic environment parameters. 19th Ocean Engineering conference,
Taiwan, p439-445, Nov. 1997.
Lakowicz, J. R. (1983) Principles of fluorescence spectroscopy, Plenum Press, New
York.
Landrum, P. F. Nihart, S. R., Eadie, B. J. and Gardner, W. S. (1984) Reverse-phase
separation method for determining pollutant binding to aidrich humic acid and
dissolved organic carbon of natural water. Environ. Sci. Technol., 18, 187-192.
Laor, Y., and M. Rebhun. 1997. Complexation-flocculation: A new method to
determine binding coefficients of organic contaminants to dissolved humic
substances. Environ. Sci. Technol. 31:3558–3564.
Lassen, P. and Carlsen, L. (1997) Solubilization of phenanthrene by humic acids.
Chemosphere, 34, 817-825.
Lassen, P., Doulsen, M. E., Frank, S-L and Carlsen, L. (1997) Leaching of selected
PAH’s and hetero-analoguts from an organic matrix into synthetic ground water.
Influence of dissolved humic material. Chemosphere, 34, 335-344.
Lee, C. L. and Kuo, L. J. (1999) Quantification of the dissolved organic matter effect
on the sorptin of hydrophobic organic pollutant: application of an overall
mechanistic sorption model. Chemosphere, 38, 807-821.
Lee, C. L., Kuo, L. J., Huang, H. T. and Hsieh, P. C. (2003) Effects of ionic strength
on the binding of phenanthrene and pyrene to humic substances:three-stage
variation model. Wat. Res., 37, 4250-4258.
Lee, M. L., Novotny, M. V. and Bartle, K. D. (1981) Analytical chemistry of
polycyclic aromatic compounds, Academic Press, New York.
Li, X. P. and McGuffin, V. L. (2004) Selective fluorescence quenching of
nitrogen-containing polycyclic aromatic hydrocarbons by aliphatic amines.
Ana.Chim.Acta., 526, 155-162.
Magee, B. R., Lion, L. W. and Lemly, A. T. (1991) Transport of dissolved organic
macromolecules and their effect on the transport of Phenanthrene in porous
media. Environ. Sci. Technol.,25, 323-331.
Manunza, B., Deiana, S., Maddau, v., Gessa,C. and Seeber, R. (1995) Transport of
dissolved organic macromolecules and their effect on transport of phenanthrene
in porous media. Environ. Sci. Technol., 59, 1570-1574.
76
McCarthy, J. F. and Jimenez, B. d. (1985)Interactions betweer polycyclic aromatic
hydrocarbons and dissolved humic material: binding and dissociation. Environ,
Sci. Technol. 19, 1072-1076
Means, J. C. (1995) Influence of salinity upon sediment-water partitioning of aromatic
hydrocarbons. Mar. Chem., 51, 3-16.
Menzie, C. A., Potocki, B. B. and Santodonato, J. (1992) Exposure tocarcinogenic
PAHs in the environment. Environ. Sci. Technol. 26, 1278-1284.
Miller, M. M., Wasik, S. P., Huang, G-L, Shiu, W-Y and Mackay, D. (1985)
Relationships between octanol-water partition coefficient and aqueous solubility.
Environ. Sci. Technol. 19, 522-529.
Morra, M. J., Corapcioglu, M. O., Wandruszka, R. V., Marshall, D. B. and Topper, K.
(1990) Fluorescence quenching and polarization studies of Naphthalene and
1-Naphthol interaction with humic acid. Soil Sci. Soc. Am. J., 54, 1283-1289.
Murphy, E. M., Zachara, J. M., Smith, S. C., Phillips, J. L. and Wietsma, T. W. (1994)
Interaction of hydrophobic organic compounds with mineral-bound humic
substances. Environ. Sci. Technol. 28, 1291-1299.
Nielsen, T., Helweg, C., Siigur, K. and Kirso, U. (1997) Application of HPLC
capacity coefficients to characterize the sorption of polycyclic aromatic
compounds to humic acid. Environ. Sci. Technol., 44, 1873–1881.
Parker, C. A. (1968) Photoluminescence of solutions. pp. 222. Elsevier Amsterdam.
Paolis, F. D. and Kukkonen, J. (1997) Binding of organic pollutants to humic and
fulvic acids: Influence of pH and the structure of humic material. Chemosphere
34, 1693-1704.
Puchaiski, M. M., Morra, M. J. and Wandruszka, R. V. (1992) Fluorescene quenching
of synthetic organic compounds by humic materials. Environ. Sci. Technol. 26,
1787-1792.
Raber, B., Kögel-Knabner, I., Stein, C. and Klem, D. (1998) Partitioning of polycyclic
aromatic hydrocarbons to dissolved organic matter from different soils.
Chemosphere 36, 79-97.
Ragle, C. S., Engebretson, R. R. and Wandruszka, R. V. (1997) The sequestration of
hydrophobic micropollutants by dissolved humic acids. Soil Sci. 162, 106-114.
Rav-acha, Ch. and Rebhun, M. (1992) Binding of organic solutes to dissolved humic
77
substances and its effects on adsorption and transport in the aquatic environment.
Wat. Res. 26, 1645-1654.
Rebhun, M., Smedt, F. DE and Rwetabula, J. (1996) Dissolved humic substances for
remediation of sites contaminated by organic pollutants: Binding-desorption
model prdicitions. Wat. Res., 30, 2027-2038.
Schlautman, M. A. and Morgan, J. J. (1993) Effects of aqueous chemistry on the
binding of polycyclic aromatic hydrocarbons by dissolved humic materials.
Environ. Sci. Technol., 27, 961-969.
Schnitzer, M. (1978) Humic substances: chemistry and reactions. In Soil Organic
Matter (Edited by Schnitzer M. and Khan S. U.), pp. 1-64. Elsevier Science
Publishing Company, New York.
Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of
interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751-767.
Shen, Y. H. (1999) sorption of natural dissolved organic matter on soil. Chemosphere,
38, 1505-1515.
Shimziu, Y. and Liljestrand, H. M. (1991) Sorption of polycyclic aromatic
hydrocarbons onto natural solids: Determination by fluorescence quenching
method. Wat. Sci. Technol., 23, 427-436.
Snoeyink, V. L. and Jenkins, D. (1980) Water Chemistry. John Wiley & Sons, Inc
Stevenson, F. J. (1994) Humus Chemistry: genesis, composition, reactions, 2nded.,
John Wiley & Sons, New York.
Tiller, C. L. and Jones, K. D. (1997) Effect of dissolved oxygen and light exposure on
determination of Koc values for PAHs using fluorescene quenching. Environ. Sci.
Technol. 31, 424-429.
Traina, S. J., Spontak, D. A. and Logan, T. J. (1989) Effect of cations on complexation
of Naphthalene by water-soluble organic carbon. Environ. Qual., 18, 221-227.
Voice, T. C., Rice, C. P. and Weber, W. J., Jr. (1983) Effect of solids concentration on
the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ.
Sci. Technol. 17, 513-518.
von Wandruszka, R., Ragle, C. and Engebretson, R. (1997) The role of selected
cations in the formation of pseudomicelles in aqueous humic acid. Talanta 44,
805-809.
78
Wagoner, D. B. and Christman, R. F. (1997) Molar mass and size of Suwannee River
natural organic matter using multi-angle laser light scattering. Environ. Sci.
Technol. 31, 937-941.
Wershaw, R. L. (1986) A new model for humic materials and their interactions with
hydrophobic organic chemicals in soil-water or sediment-water systems. J.
Contamin. Hydro. 1, 29-45.
Wershaw, R. L. (1989) Application of a membrane model to the sorptive interactions
of humic substances. Environmental Health Perspectives 83, 191-203.
Wershaw, R. L. (1993) Model for humics in soils and sediments. Environ. Sci.
Technol. 27, 814-816.
Wild, S. R. and Jones, K. C. (1995) Polynuclear aromatic hydrocarbons in the United
Kingdom environment: a preliminary source inventory and budget. Environ.l
pollut., 88, 91-108.
Zhou, J. L., Rowland, S. J. and Mantoura, R. F. C. (1994) The formation of humic
coatings om mineral particles under simulated estuarine conditions - a
mechanistic study. Wat. Res., 28, 571-579.
Zhou, J. L. and Rowland, S. J. (1997) Evaluation of the interactions between
hydrophobic organic pollutants and suspended particles in estuarine waters. Wat.
Res., 31, 1708-1718.
徐士涵 (2006),水環境因子對含氮多環芳香烴化合物與膠體性有機物結合係數
之影響-pH 值與離子強度,國立中山大學海洋海洋環境及工程研究所碩士論
文。
陳鎮東 (1994),海洋化學,國立編譯館,台北市。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code