Responsive image
博碩士論文 etd-0829108-070117 詳細資訊
Title page for etd-0829108-070117
論文名稱
Title
波流場中質點運動特性之試驗研究
Experimental study of the particle’s motion characteristics for wave-current interactions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
177
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-29
繳交日期
Date of Submission
2008-08-29
關鍵字
Keywords
質量傳輸、質點運動軌跡、波流交會
mass transport, wave-current interaction, Lagrangian, particle trajectory
統計
Statistics
本論文已被瀏覽 5684 次,被下載 1330
The thesis/dissertation has been browsed 5684 times, has been downloaded 1330 times.
中文摘要
利用Lagrangian 描述方式來進行理論解析與試驗研究,至今已有一系
列之發展。但對於諸多軌跡試驗者,雖有量測質點運動軌跡,然因受水槽
長度不夠常有反射波的干擾和模擬水粒子的顆粒其粒徑與密度等因素,迄
今仍無法於前進波與同向及反向流交會流場中,得到較完整的質點運動軌
跡之試驗量測的量化資料。為了探究波與流交會流場中的真實運動,遂進
行質點運動軌跡試驗研究。
本文選用直徑大小為1mm 之圓形塑膠顆粒(聚苯乙烯)來模擬水粒子
質點,搭配高速攝影機拍攝觀察波與流同向及反向交會流場中之質點運動
特性,進行一系列定性化及定量化試驗。資料處理上則採影像處理的方式
擷取與定位質點軌跡座標,改善攝影機所造成的網格變形與扭曲,減少人
為判定點位上之誤差,以獲取較往昔更佳的軌跡曲線。
由本文試驗結果得知只要有波浪存在,則流場中的質點運動皆會出現
交叉迴旋式的而非封閉的運動軌跡。於前進波與同向(水平)均勻流交會的
流場中之質點運動軌跡則是有更拉開的幅度。當波谷處的總水平流速等於
零時,則位在波谷處之質點運動軌跡甚至出現尖點軌跡。而於前進波與反
向(水平)均勻流交會的流場中之質點運動軌跡,則呈現與波與流同向交會
及等深無流時不同的結果而有上下顛倒的相反情形。此系列結果與陳(1994)
及許、陳(2006)以理論解析至第三階結果相比,具有相當一致的運動情形。
且其質點運動軌跡重現高程的運動週期皆大於波浪本身者,並隨波浪尖銳
度變大而增大,試驗之質量傳輸速度皆與理論本身相同,質點運動之水平
速度與重直運動速度皆與理論者重合。誤差探討上各理論與試驗量值之比
值均在10%以內,顯示試驗研究與陳(1994)與許、陳(2006)之理論解析相當
吻合。
Abstract
There is a long terms of developement for academics theoretical analyzing and
experimental researching by using the Lagrangian method. But for such trajectory
experimentalists still have interference with reflected waves because of the length of
the water tank is too short or the diameter and the density of the simulate particle , in
spite of measuring the trajectory of the fluid particle have done. For there is no quite
completed quantification data for the trajectory of fluid particle, this study is aiming at
researching the truly movement of the flow field under wave-current interaction by
trajectory measuring.
This research choosing the simulate particle’s diameter for 1 mm , collocating
with a high-speed vedio camera to record the particle’s moving characteristics while
the wave-current interaction occured, to proceed a series of qualitative and
quantitative testing. And to comple with all these data and improve the modification
by using Image Processing to derive and orientate the coordinates .
According to the experimental results of the flow field,it has proved that mass
transport occured at the same-depth and no-flow condition through the wave
progressing direction.The trajectory of the fluid particle of wave-current interaction
in co-flow , its curve presenting the cross-convolution increasing and even presenting
the cuspidal locus. And the trajectory of the fluid particle of wave-current interaction
in inverse –flow is opposite to the trajectory of the no-flow movement. The results of
the experiment is quite accord with to the 3rd order the theoretical analyzing of Chen
(1994)and Shu、Chen(2006)。The fluid particle reproducting the moving period
of the high-elevation is greater than the wave’s and increasing by the sharpness of the
wave.
The mass transport velocity is the same theory results ,and decreased deviation
of artificiality in estimating particle position.
According to the ratio of the experimental results, root mean square of error Ex
and total mass transport displacement. The experimental results compared to the
theoretical results obtained by Chen (1994)and Hsu、Chen(2006) has the similar
results as well.
目次 Table of Contents
摘要.............................................................................................I
ABSTRACT ............................................................................. II
目 錄......................................................................................IV
圖目錄.......................................................................................X
表目錄................................................................................XVIII
第一章 緒論.............................................................................. 1
1-1 研究目的.....................................................................................1
1-2 文獻回顧......................................................................................2
1-3 研究方法及本文架構...............................................................11
第二章 波動系統描述與解析................................................ 13
2-1 等深水中非旋轉性自由表面前進重力波之座標系統描述....13
2-1-1 等深水中非旋轉性自由表面前進重力波之控制方程.................14
2-1-2 等深水中非旋轉性自由表面前進重力波至第三階解.................15
2-2 Lagrangian 系統下三維波與流交會流場之理論解析..........17
2-2-1 波流場的控制方程..........................................................................18
2-2-2 波與流交會流場至第三階解..........................................................19
第三章 實驗設備與佈置及方法............................................ 24
3-1 實驗設備...................................................................................24
3-1-1 基本設備..........................................................................................24
3-1-2 攝影裝置..........................................................................................28
3-1-3 水粒子模擬......................................................................................29
3-2 實驗佈置...................................................................................32
3-3 實驗方法與步驟.......................................................................33
3-4 實驗條件...................................................................................36
第四章 影像位差校正及影像辨識與座標轉換.................... 37
4-1 影像位差之探討與校正...........................................................38
4-1-1 影像位差之探討.............................................................................38
4-1-2 影像位差之校正..............................................................................41
4-2 影像辨識處理...........................................................................44
4-2-1 邊緣強度.........................................................................................46
4-2-2 影像二值化.....................................................................................46
4-2-3 濾除雜訊.........................................................................................46
4-2-4 控制點(即格點)的擷取..................................................................46
4-2-5 擬合曲線.........................................................................................47
4-3 影像座標之轉換.......................................................................47
4-4 實際校正後的情形....................................................................48
第五章 試驗結果、分析與討論............................................ 50
5-1 試驗結果分析...........................................................................54
5-1-1 試驗困難所在及解決......................................................................54
5-1-2 等深無流情形..................................................................................55
5-1-3 波與流交會情形.............................................................................56
5-2 試驗與理論比對.......................................................................58
5-2-1 質點運動軌跡比較.........................................................................58
5-2-3 波浪週期Tw 與水粒子運動(或重現高程)週期 TL ........................58
5-2-4 質點運動速度.................................................................................59
5-2-5 軌跡尖點出現的條件.....................................................................59
第六章 結論與建議................................................................ 97
6-1 結論...........................................................................................97
6-2 建議...........................................................................................98
參考文獻.................................................................................. 99
附錄一 實驗條件下之各時序列位置座標值...................... 104
附錄二 雙曲線正切函數TANH 之圖形............................. 157
參考文獻 References
1. 陳陽益(1983)“波浪通用模式與最大波之解析”,國立成功大學博士
論文。
2. 黃煌煇、林呈、林西川(1985)“波浪在均勻水流流場中之特性變化”,
港灣技術,第一期,pp51-75。
3. 陳陽益、邱永芳、莊文傑(1989)“前進重力波與駐波之關連”,第十
一屆海洋工程研討會論文集,pp.273-298。
4. 陳陽益(1990)“等深水中兩規則前進重力波列交會之解析”,港灣技
術第五期,pp.1-45。
5. 陳陽益等(1990~1994) “波流交互作用之研究” ,港灣技術研究報
告。
6. 陳陽益、湯麟武(1992)“平緩坡度底床上前進的表面波”,第十四屆
海洋工程研討會論論文集,pp.1-13。
7. 張憲國、陳陽益(1993)“波流交會之數值解析”,港灣技術,第八期,
pp51~75
8. 陳陽益 (1994) 「等水深中非旋轉性的自由表面前進重力波之
Lagrangian 方式的攝動解析」,第十六屆海洋及海岸工程研討會論文
集,第A1-29 頁。
9. 陳陽益(1994)“等深水中非旋轉性的自由表面前進重力駐波之
Lagrangian 方式的攝動解析”,第十六屆海洋工程研討會論文集,
pp.A30-59。
10. 陳陽益(1995)“Lagrangian 與Eulerian 解下前進重力波與重力駐波的動
力特性”,第十七屆海洋工程研討會論文集,pp.19-36。
11. 陳陽益(1996)“非旋轉性前進波的Eulerian 與Lagrangian 解間的轉換
性”,第十八屆海洋工程研討會論文集,pp.1-13。
12. 陳陽益、林受勳、何良勝(1998)“Lagrangian 方式下之規則前進波流場
100
試驗研究”,第二十屆海洋工程研討會論文集,pp.60-70。
13. 陳陽益(2003I)“非陡坡底床上前進波的非線性解析:I. 系統化攝動展
開模式”,第二十五屆海洋工程研討會論文集,39 頁-48 頁。
14. 陳陽益(2003II) “ 非陡坡底床上前進波的非線性解析: II. 至
εiα j,i+ j=3 階的解析解及印證”,第二十五屆海洋工程研討會論文
集,49 頁-58 頁。
15. 陳陽益、許弘莒 (2005)「非旋性前進波之三階Eulerian 與Largrangian
解間的轉換」,第二十七屆海洋及海岸工程研討會論文集,第63-73
頁。
16. 許弘莒、陳陽益、李孟學(2006) “ Lagrangian 系統下三維波流交互
作用之理論解析”,第二十八屆海洋工程研討會論文集 117~122。
17. 陳伯棋(2006)「海床粗糙雷射掃瞄系統資料處理軟體分析開發」,
海下技術研究所,碩士班論文。
18. Biesel, F.(1952)“Study of wave propagation in water of gradually
varying depth”,U.S. National Bureau of Standards. Gravity Wave. NBS
Circular 521。
19. Boussinesq, J.(1871)“Theorie de l’intumescence liquide appelee onde
solitaire ou de translation se propageant dan un canal rectangulaire”,
Comptes Rendus 72,pp.755-759。
20. Chen, Y. Y., Hwung, H.H., and Hsu, H. H. (2005), “Theoretical Analysis
of Surface Waves Propagation on Sloping Bottoms Part1,” Wave Motion,
42(2005) 335-351.
21. Chen, Y. Y., Hsu, H. H., Chen, G.Y., and Hwung, H.H. (2006),
“Theoretical Analysis of Surface Waves Shoaling and Breaking on a
Sloping Bottom Part2. Nonlinear waves,” Wave Motion, 43(2006)
339-356.
22. Cokelet, E. D.(1977)“Steep gravity waves in water of arbitrary uniform
depth”,Phil. Trans. Roy. Soc. A. 286,pp.183-239。
23. Chin H. Wu and Aifeng Yao , Kuang-An Chang “DPIV Measurements
for Deep-water wave Breaking Under Following Currents” .
24. Christopher Swan (1990) “An Experimental Study of waves on a strongly
sheared current profile” Coastal Engineering pp. 489-502.
25. Fenton, J. D.(1985)“A fifth-order Stores theory for steady waves”,J.
Waterway, port, Coastal and Ocean engineering A.S.C.E. Vol.3, No.2,
pp.216-234。
26. Fenton, J. D.(1990)“Nonlinear wave theories”,The Sea, Vol.9: Ocean
Engineering Science, Part A. Wiley,pp.1-25。
27. Gaillard, D. D.(1904) “ Wave action in relation to engineering
structure”,U.S Army Prof. Paper No.31, Washington, reprinted by
Engineer School Fort Belvoir, Virginia in 1935。
28. Gerstner, F. J. V.(1802)“Theorie der wellen”,Abh. d. K. bohm. Ges.
Wiss, reprinted in Ann. der Physik 1809, 32, 412-440; Cite Wind Waves,
Kinsman, B. 1965,pp.241-248。
29. G. P. THOMAS (1981) “Wave-current interactions : an experimental
and numerical study. Part 1. Linear waves” , J. Fluid Mech. , vol. 110 ,
pp. 457-474.
30. G. P. THOMAS (1990) “Wave-current interactions : an experimental
and numerical study. Part 2. NonLinear waves” , J. Fluid Mech. ,
vol.216 , pp. 505-536.
31. IVER BREVIK and BJORN AAS (1980) “Flume Experiment On Waves
And Currents. I. Rippled Bed” . Coastal Engineering. 3 , pp. 149-177.
32. IVER BREVIK and Luftkrigsskolen, Trondheim (1980) “Flume
Experiment On Waves And Currents. II. Smooth Bed” . Coastal
Engineering. 4 , pp. 89-110.
33. Korteweg, D. J. and de Vries G.(1895)“On the change of form of long
waves advancing in a rectangular channel, and on a new type of long
stationary waves”,Phil. Mag. (5), 39,pp.422-443。
34. Longuet-Higgins, M. S.(1953) “Mass transport in water waves” , Phil.
Trans. Roy. Soc. A245 , pp. 533-581.
35. Longuet-Higgins, M.S., and Stewart, R.W.(1960), “Changes in the from of
short gravity waves on long wvaes and tidal currents”, J. Fluid Mech . 8,
pp 565-583.
36. Longuet-Higgins, M. S.(1986) “ Eulerian and Lagrangian aspects of
surface waves”,J. Fluid Mech. 173,pp.533-581。
37. Miche, A.(1944)“Mouvements ondulatories de la mer en profondeur
constante ou decroissante”,Annales des ponts et chaussees,pp.25-78、
131-164、270-292、369-406。
38. Morison, J. R. and Crooke, R. C. (1953) “The me- chanics of deep water,
shallow water, and breaking waves” U.S. Army, Corps of Engineers,
Beach Erosion Board, Tech. Memo. No. 40, March.
39. McCowan, J.(1981)“On the solitary wave”,Phil. Mag. (5),32,
pp.45-58。
40. Muller, G. and Trever, J. T. W.(1995)“Visualistion of flow condition
form inside a shore wave power-station”,Ocean Eng. Vol.22, No.6,
pp.629-614。
41. Motohiko Umeyama (2005) “Reynolds Stresses and Velocity Distributions
in a Wave-current Coexisting Environment” Journal of the waterway,
port, coastal, and ocean engineering pp. 203-212.
42. Peregrine, D. H. , “Interaction of water waves and currents”, Advances on
Applied Mech.,16,pp9-117.
43. Phillips, O. M.(1977)“The dynamic of the upper ocean”,2nd edit,
pp.43。
44. Pierson, W. J. Jr.(1962) “ Perturbation analysis of the Navier-Stoke
equations in Lagrangian form with selected linear solution”,J. Geophy.
Res. 67(8),pp.3135-3160。
45. P. Bonmarin , F. Bartholin, A. Ramamonjiarisoa (1995) “Action of an
adverse current on the shape of deep water surface waves” Experiments
in Fluids 18 pp. 438-444.
46. Rankine, W. J. M.(1863)“On the exact form of waves near the surface of
deep water”,Phil. Trans. Roy. Soc. A. 153,pp.127-138。
47. Rayleigh, L.(1876)“On waves”,Phil. Mag. (5), 1,pp.257-279。
48. Rienecker, M. M. and Fenton, J. D.(1981)“A Fourier Approximation
method for steep water waves”,J. Fluid Mech. 104,pp.119-137。
49. Rafael C. Gonzalez、Richard E. Woods、Steven L. Eddins (1995)「Digital
image processing using Matlab」.
50. skjelbreia, L. (1959) “Gravity waves, Stokes’ third order approximation;
tables of functions” Berkeley, California: The Engineering Foundation
Council on Wave Research.
51. Stokes, G. G.(1847)“On the theory of oscillatory wave”,Camb. Trans.
8,pp.411-473。
52. William R. Brownlie, A. M. ASCE (1979) “Water particle motion under
deep water stokes waves” Journal of the waterway port coastal and ocean
division pp. 89-94.
53. Williams, J. M.(1981) “ Limiting gravity waves in water of finite
depth”,Phil. Trans. Roy. Soc. Lond. A. 320,pp.139-188。
54. Zimmermann, C., Kohlhase, S. and Zielke, W.(1994)“Calculation of
wave kinematics with a Lagrangian approach (in German) ” ,
Franzius-Institut.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code