Responsive image
博碩士論文 etd-0829108-152831 詳細資訊
Title page for etd-0829108-152831
論文名稱
Title
波導環境因素對於海面所產生背景噪音之影響:數值模擬與分析
Effects of Waveguide Properties on Surface-Generated Ambient Noise: Simulation and Analyzed
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-26
繳交日期
Date of Submission
2008-08-29
關鍵字
Keywords
波導環境、背景噪音、空間相關性、隨機聲源
Random Sources, Ambient Noise, Gaussian, Waveguide
統計
Statistics
本論文已被瀏覽 5671 次,被下載 837
The thesis/dissertation has been browsed 5671 times, has been downloaded 837 times.
中文摘要
本研究之目的乃在於探討波導環境對於海面所產生環境噪音之影響。環境噪音的來源包含天然與人為因素,其噪聲源各有其特殊的頻率與強度,而風浪於海面所造成的噪音屬連續隨機聲源,此種聲源即為本研究主要探討之環境噪音來源。本研究引用 Kuperman與Ingenito[5]於1980年提出一海洋環境噪音模擬簡化模式,作為環境噪音模擬的基礎。該模式將海面所產生的噪音用一接近海面的連續單點聲源來表示,並使用白噪音譜來做模擬,經由理論的推導,建構一環境噪音強度與空間分佈特性之運算公式,作為本研究之基礎。本研究乃基於白噪音譜並不符合真實海洋環境,故引進較廣為使用之高辛波數譜。為簡化環境,本研究將沉積層與底床中聲速與密度皆假設為常數分佈,僅改變其聲速剖面。本研究中分別探討了白噪音、高辛二種模式,利用不同頻率、不同相關長度等相關參數,來模擬及分析海洋環境噪音場,並探討海表面不同波導環境及噪聲源分佈對於海洋環境噪音的影響,若將本數值模式建構更完整之海洋環境,搭配海面遙測技術則可應用於預測海洋環境噪音。
Abstract
Ambient noise generated by surface random processes is the primary contribution to the noise-field energy in the intermediate frequency band, and thus is important in many applications of underwater sound. In this study, the noise field is analyzed with respect to the effects of random source spectrum, waveguide structure of the water column, and seabed stratifica¬tion upon the noise-field intensity as well as spatial correlation. Based upon a noise-generation model due to continuous random sources, incorporating several analytical models for seabed stratification, a formulation may then be derived to facilitate the numerical implementation. Many results shall be generated and analyzed. In this study considers the noise field generated by wave in an oceanic environment with a sediment layer possessing a constant density and sound-speed profile. This model closely resembles the oceanic waveguide environment and therefore enables the simulation of surface noise generation. Many results of the noise field were generated, in¬cluding the noise intensity distribution, vertical and horizontal correlations. It is demonstrated that the noise intensity may be affected by the strat¬ification mainly through the continuous spectrum, in that the continuous spectrum is equally important as the normal modes in the present analysis. Moreover, the results for the correlations show that the noise field in the horizontal direction becomes more coherent when the noise sources are more correlated, while in the vertical direction, the results tend to reverse. The horizontal correlations of the noise field due to surface random sources with non-isotropic power spectrum, such as non-isotropic Gaussian and, were generated and analyzed.
目次 Table of Contents
第一章 緒論 1
1.1 研究主題與研究動機.................................1
1.2 文獻回顧...........................................2
1.3 研究方法...........................................3
1.4 論文範疇...........................................4

第二章 理論模式 5
2.1 簡介...............................................5
2.2 聲波方程式.........................................6
2.3 聲波方程式之解.....................................7
2.3.1 常數分佈.........................................8
2.3.2 k^2-linear分佈...................................9
2.3.3 各層聲波方程之解................................11
2.4 邊界條件..........................................11
2.5 海表面噪音場數值模式..............................13
2.6 海表面之隨機聲源特性..............................16
2.6.1 隨機過程與隨機場................................16
2.6.2 高辛波譜模式....................................18
2.5 結語..............................................19

第三章 基準驗證 20
3.1 OASES計算聲學軟體介紹.............................20
3.2 不同聲速剖面波數譜之結果驗證......................21
3.3 不同聲速剖面噪聲強度之結果驗證....................24
3.4 結語..............................................25

第四章 噪音場特性分析 26
4.1 影響噪聲強度之因素................................26
4.1.1 不同波數譜對噪聲強度之影響......................26
4.1.2 不同環境參數對噪聲強度之影響....................28
4.1.3 不同聲速剖面對噪聲強度之影響....................31
4.1.4 海表面噪音源的隨機特性對噪聲強度之影響..........34
4.2 影響空間相關性之因素..............................36
4.2.1 海表面噪音源的隨機特性對空間相關性之影響........36
4.2.2 不同聲速剖面對空間相關性之影響..................38

第五章 結論與建議 46
5.1 結論..............................................46
5.2 建議..............................................48

附錄A 波導環境因素對於海面所產生背景噪音之影響:數值模擬與分析 53
參考文獻 References
[1] Alyn, C. Duxbury, Alison B. Duxbury and Keith A. Sverdrup, World’s Ocean (6th ed.),
McGraw-Hill (2000).
[2] Arease, E.M. and Arase, T., “Correlation of Ambient Sea Noise,” J. Acoust. Soc. Am., 40,
pp. 205-210 (1966).
[3] Boyce, W.E. and R.C. DiPrima, Elementary Differential Equations and Boundary Value
Problems (7th ed.), John Wiley (1997).
[4] Brekhovskikh, L.M., Waves in Layered Media., Academic, New York (1980).
[5] Buckingham, M.J., “Spatial Coherence of Wind-Generated Nois in a Shallow Ocean Channel,”
J. Acoust. Soc. Am., 70, pp. 1412-1420 (1981).
[6] Clay, C.S. and H. Medwin, Acoustical Oceanography, John Wiley (1977).
[7] Cox, H., “Spatial Correlation in Arbitrary Noise Field with Application to Ambient Sea
Noise,” J. Acoust. Soc. Am., 54, pp. 1289-1301 (1973).
[8] Cron, B.F. and Sherman, C.H., “Spatial Correlation Funtion for Various Noise Models,”
J. Acoust. Soc. Am., 93(4.1), pp. 1736-1742 (1993).
[9] Dozier, L.B. and Tappert, F.D., “Statistics of normal mode amplitudes in a random ocean,
J. Acoust. Soc. Am., 64(2), pp. 533-547 (1978).
[10] Epstein, P., “Reflections of waves in an inhomogeneous absorbing medium.” Proc. Natl.
Acad. Sci. USA 16, pp. 627 (1930).
[11] Ewing, W.M., W.S. Jardetzky, and F. Press, Elastic Wave in Layered Media, McGraw-Hill
(1957).
[12] Garrison, T., Oceanography (5th ed.), Wadsworth (2005).
[13] Hamilton, E.L., “Geoacoustic modeling of the sea floor.” J. Acoust. Soc. Am., 68(5), pp.
1313-1340 (1980).
[14] Huang, C.-F., “Acoustic wave scattering from rough sea surface and seabed”, Taiwan,:
M.Sc. D. dissertation, Institute of Undersea Technology, National Sun Yat-sen University
(1998).
[15] Jensen, F.B., W.A. Kuperman, M.B. Poter, and H. Schmidt, Computational Ocean Acoustic,
AIP Press (1994).
[16] Kuperman, W.A., “Coherent component of specular reflection and transmission at a randomly
rough two-fluid interface,” J. Acoust. Soc. Am., 58(2), pp. 365-370 (1975).
[17] Kuperman, W.A. and F. Ingenito, “Attenuation of the coherent component of sound propagation
in shallow water with rough boundaries,” J. Acoust. Soc. Am., 61(5), pp. 1178-1187
(1977).
[18] Kuperman, W.A. and H. Schmidt, “Rough surface elastic wave scattering in a horizontallystratified
ocean,” J. Acoust. Soc. Am., 79(6), pp. 1767-1777 (1986).
[19] Kuperman, W.A. and H. Schmidt, “Self-consistent perturbation approach to rough surface
scattering in stratified elastic media,” J. Acoust. Soc. Am., 86(4), pp. 1511-1522 (1989).
[20] Kibblewhite, A.C. and Ewans, K.C., “Wave-wave interactions,microseisms,and infrasonic
ambient noise in the ocean,” J. Acoust. Soc. Am., 78(3), pp. 981-994 (1985).
[21] Kibblewhite, A.C. andWu, C.Y., Wave Interactions As a Seismo-acoustic Source, Springer,
New York (1996).
[22] Liu, J.-Y., “Seismo-Acoustic Rough Interface Scattering of Surface-Generated Ambient
Noise in a Stratified Ocean”, Mass.: Sc. D. dissertation, Massachusetts Institute of Technology
(1993).
[23] Liu, J.-Y. and C.-F. Huang, “Acoustic plane-wave reflection from a rough surface over a
random fluid half-space,” Ocean Engineering, 28, pp. 751-762 (2001).
[24] Liu, J.-Y., C.-O. Shen, and H.-H. Chen, “Coherent reflection of acoustic plane wave from a
random sediment layer over an elastic sea floor,” Ocean Engineering, 29(13), pp. 1701-1714
(2001).
[25] Liu, J.-Y., H. Schmidt, and W.A. Kuperman, “Effect of a rough seabed on the spectral
composition of deep ocean infrasonic ambient noise,” J. Acoust. Soc. Am., 93(2), pp.
753-769 (1993).
[26] Liu, J.-Y. and J.L. Krolik, “The spatial correlation of rough seabed scattering of surfacegenerated
ambient noise,” J. Acoust. Soc. Am., 96(5.1), pp. 2876-2886 (1994).
[27] Liu, J.-Y., S.-W. Shyue, and C.-F. Huang, “Coherent reflection of acoustic plane wave from
rough interfaces in a stratified random fluid medium,” J. Marine Science and Technology,
8(2), pp. 90-100 (2000).
[28] Miklowitz, J., The Theory of Elastic Waves and Waveguides, North-Holland, 1978.
[29] Porter, M.B. and Reiss, E.L., “A numerical method for ocean acoustic normal modes,” J.
Acoust. Soc. Am., 76(1), pp. 244-252 (1984).
[30] Porter, M.B., The KRAKEN normal mode program Rep. SM-245, SACLANT Undersea
Research Centre, La Spezia, Italy (1991).
[31] Robins, A.J., “Reflection of plane acoustic waves from a layer of varying density,” J.
Acoust. Soc. Am., 87(4), pp. 1546-1552 (1990).
[32] Robins, A.J., “Reflection of a plane wave from a fluid layer with continuously varying
density and sound speed,” J. Acoust. Soc. Am., 89(4), pp. 1686-1696 (1991).
[33] Robins, A.J., “Exact solutions of the Helmholtz equation for plane wave propagation in a
medium with variable density and sound speed,” J. Acoust. Soc. Am., 93(3), pp. 1347-1352
(1993).
[34] Robins, A.J., “Generation of shear and compression waves in an inhomogeneous elastic
medium,” J. Acoust. Soc. Am., 96(3), pp. 1669-1676 (1994).
[35] Schmidt, H. and W.A. Kuperman, “Spectral representations of rough interface reverberation
in stratified ocean waveguides,” J. Acoust. Soc. Am., 97(4), pp. 2199-2209 (1995).
[36] Schmidt, H., SAFARI: User’s Guide, SACLANT Undersea Research Centre, La Spezia,
Italy (1988).
[37] Schmidt, H., OASES: User Guide And Reference Manual, Version 3.1, Department of
Ocean Engineering, Massachusetts Institute of Technology (2002).
[38] Tappert, F.D., “The parabolic approximation method,” Wave Propagation in Underwater
Acoustics, edited by J.B. Keller and J.S. Papadakis, Springer-Verlag, pp. 224-287 (1977).
[39] Tolstoy, I., “The theory of waves in stratified fluids including the effects of gravity and
rota-tion.” Rev. Mod. Phys., 35, pp. 207-230 (1963).
[40] Tolstoy, I., “Effects of density stratification on sound waves.” J. Geophys. Res., 70(24),
pp. 6009-6015 (1965).
[41] Williams, A.O. and MacAyeal D.R., “Acoustic reflection from a sea bottom with linearly
increasing sound speed,” J. Acoust. Soc. Am., 66(6), pp. 1836-1841 (1979).
[42] Wolfram, S., The Mathematica Book, Cambridge University Press, 1996.
[43] 林怡君、劉金源,'海床層化性質對於海表面所產生之環境噪音的影響',國立中山大學海洋物理研究所碩士論文,民93。
[44] 施國楓、劉金源,'各種隨機聲源對海表面所產生之環境噪音的影響',國立中山大學海下技術研究所碩士論文,民93。
[45] 朱崇銳、吳勇宏、劉金源,'點聲源自非均勻海床上反射問題之研究~(I)',第五屆水下技術研討會論文集,頁~201-207,民92。
[46] 劉金源,《水中聲學─水聲系統之基本操作原理》,國立編譯館,民90。
[47] 劉金源,《海洋聲學導論─海洋聲波傳播與粗糙面散射之基本原理》,中山大學出版社,民91。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code