Responsive image
博碩士論文 etd-0829108-152942 詳細資訊
Title page for etd-0829108-152942
論文名稱
Title
TSG101與KLIP1交互作用並影響其蛋白泛素化
Interaction with TSG101 modulates the ubiquitination of KLIP1
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-26
繳交日期
Date of Submission
2008-08-29
關鍵字
Keywords
泛素化
ubiquitination, ubiquitin, KLIP1, TSG101
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
中文摘要

腫瘤易感基因TSG101具有參與胞內蛋白質分選、囊泡運輸和轉錄調控等重要功能。本實驗室以酵母菌雙雜交技術選殖出與TSG101有交互作用的蛋白,其中KLIP1是2003年被發現的一個轉錄抑制因子,被指出具有抑制卡波西氏肉瘤相關疱疹病毒(Kaposi’s sarcoma-associated KSHV)的胸腺嘧啶激酶(TK)基因啟動子的活性。在本研究中,我們首先利用免疫共沉澱法證實TSG101與KLIP1在293細胞有交互作用,並以共軛焦顯微鏡觀察到此兩蛋白在細胞核中有共位現象。接著,我們將表現His-tagged的野生型泛素或無法形成多泛素鏈的突變型K0泛素的表達質體分別與表現HA-KLIP1蛋白之pHA-KLIP1質體共同轉染至293細胞內,並利用Ni-NTA sepharose進行轉染細胞內泛素化蛋白之純化,再利用HA抗體進行泛素化HA-KLIP1蛋白之偵測,結果發現HA-KLIP1蛋白可被多泛素化及單泛素化修飾。進一步實驗並發現隨著細胞內TSG101表現量增加, 71 KDa-KLIP1泛素化蛋白表現量會隨之減少,而60 KDa-KLIP1泛素化蛋白表現量會隨之增加,顯示TSG101會調控KLIP1蛋白泛素化的型態,此外,在其UEV功能區上與泛素交互作用之四個胺基酸位點突變的突變型TSG101會失去影響KLIP1泛素化型態的能力。而在KLIP1蛋白上6個可能被泛素化之賴胺酸位點突變的突變型HA-KLIP1蛋白的泛素化修飾型態(HA-KLIP1-M6)與野生型HA-KLIP1蛋白的型態明顯不同,顯示這六個賴胺酸位點可能包含KLIP1蛋白被泛素化修飾的位點。最後,我們藉由TK啟動子luciferase報導活性分析,確認KLIP1具有抑制TK啟動子之轉錄活性,並發現HA-TSG101扮演共同抑制因子的角色,此外,也發現其60及71 kDa-KLIP1-M6泛素化型式蛋白之缺乏會伴隨著HA-KLIP1- M6之轉錄抑制活性之減弱,顯示,TSG101會調控KLIP1的單泛素化修飾型式,使其以60 kDa-KLIP1單泛素化型態存在細胞核內,以執行其TK啟動子轉錄抑制活性,而KLIP1蛋白質上六個可能被泛素化修飾K位點同時突變,確能使其喪失對TK啟動子轉錄抑制活性,也顯示這六個K位點可能包含形成60 kDa-KLIP1及71 kDa-KLIP1單泛素化蛋白型態的K胺基酸位點,進一步針對這六個K胺基酸位點單一突變之HA- KLIP1蛋白表現質體之研究,將可釐清其確切之泛素化K胺基酸位點之所在。
Abstract
Abstract

Tumor susceptibility gene TSG101 plays an important role in cellular functions including intracellular protein sorting, vesicular trafficking, and transcription regulation. Our previous results from yeast two-hybrid screening show that TSG101 interacts with a novel transcriptional repressor protein, KLIP1. In this study, we demonstrated in vivo interaction between TSG101 and KLIP1 in nucleus of 293 cells using co-immunoprecipitation assay and confocal imaging. In addition, we found KLIP1 could be modified in a modality of either poly- and mono-ubiquitination when exogenously expressed in 293 cells in conjunction with either wild type His-tagged ubiquitin or a mutant His-tagged ubiquitin (K0-Ub) which has no capability of forming polyubiquitin chain. Furthermore, we found that TSG101 could increase 60 kDa-KLIP1, but decrease 71 kDa-KLIP1 levels of monoubiquitinated KLIP1 protein species in a dose dependent manner. These results indicate that TSG101 might regulate KLIP1 protein function through affecting its monoubiquitin modification status. Further investigation using wildtype pHA-KLIP1 and mutant pHA-KLIP1-M6 containing mutation in its 6 lysine residues for possible ubiquitin modification revealed that wildtype HA-KLIP1, but not HA-KLIP1-M6, could inhibit transcription activity of thymidine kinase (TK) promoter. In conclusion, our results support that TSG101 interacts and acts as a transcriptional co-repressor of KLIP1 by keeping it in 60 kDa-monoubiquitinated status in the nucleus, where KLIP1 functions as a transcription repressor for TK promoter. Further experiment using mutant HA-KLIP1 expression plasmid containing single mutation in the 6 lysine sites should reveal the exact location of ubiquitin-modified lysine site for monoubiquitinated species of KLIP1 protein.
目次 Table of Contents
目錄

摘要 2
Abstract 4
前言
TSG101的發現與背景 6
TSG101的蛋白質結構與特性 7
蛋白質泛素化 8
TSG101與蛋白泛素化的相關性 11
KLIP1、CENP-50、MLF1IP的發現與背景 12
實驗目的 17
材料與方法
真核細胞表現載體的製備 18
In vivo Co-IP Assay 22
In VivoTSG101與KLIP1共位分析 28
KLIP1轉錄活性分析--報導基因活性分析 29
RT-PCR分析基因默化之效率 32
實驗結果
TSG101與KLIP1於細胞內產生交互作用 34
TSG101與KLIP1兩者在細胞核有共位(Co-localization)現象 35
KLIP1會進行泛素化作用之轉譯後修飾 36
TSG101與KLIP1蛋白單泛素化修飾之相關性探討 37
TSG101的UEV功能區若喪失與泛素結合能力,將失去調節KLIP1單泛素化的能力 38
確認KLIP1泛素修飾化位點 39
TSG101會影響KLIP1對於TK啟動子轉錄抑制的活性 40
討論 44
參考文獻 53
圖表 57
參考文獻 References
參考文獻

楊博賀 Searching for TSG101 interacting protein by yeast two-hybrid screening. 國立中山大學生物科學系民國94年碩士論文.

Amit I, Yakir L, Katz M, Zwang Y, Marmor MD, Citri A et al (2004). Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. Genes Dev 18: 1737-52.

Bebington C, Doherty FJ, Fleming SD (2001). The possible biological and reproductive functions of ubiquitin. Hum Reprod Update 7: 102-11.

Burgdorf S, Leister P, Scheidtmann KH (2004). TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J Biol Chem 279: 17524-34.

Busch H (1984). Ubiquitination of proteins. Methods Enzymol 106: 238-62.

Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK et al (1989). A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576-83.

Ciechanover A, Schwartz AL (1989). How are substrates recognized by the ubiquitin-mediated proteolytic system? Trends Biochem Sci 14: 483-8.

Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22: 245-57.

Feng GH, Lih CJ, Cohen SN (2000). TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence. Cancer Res 60: 1736-41.

Garber AC, Shu MA, Hu J, Renne R (2001). DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 75: 7882-92.

Grundhoff A, Ganem D (2003). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus permits replication of terminal repeat-containing plasmids. J Virol 77: 2779-83.

Haas AL, Warms JV, Hershko A, Rose IA (1982). Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257: 2543-8.

Hanissian SH, Akbar U, Teng B, Janjetovic Z, Hoffmann A, Hitzler JK et al (2004). cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP. Oncogene 23: 3700-7.

Hanissian SH, Teng B, Akbar U, Janjetovic Z, Zhou Q, Duntsch C et al (2005). Regulation of myeloid leukemia factor-1 interacting protein (MLF1IP) expression in glioblastoma. Brain Res 1047: 56-64.

Hershko A, Heller H, Elias S, Ciechanover A (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258: 8206-14.

Hicke L (2001). Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2: 195-201.

Jentsch S (1992). The ubiquitin-conjugation system. Annu Rev Genet 26: 179-207.

Koonin EV, Abagyan RA (1997). TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. Nat Genet 16: 330-1.

Kuefer MU, Look AT, Williams DC, Valentine V, Naeve CW, Behm FG et al (1996). cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/myeloid leukemia factor 2 (MLF2). Genomics 35: 392-6.

Lee MP, Feinberg AP (1997). Aberrant splicing but not mutations of TSG101 in human breast cancer. Cancer Res 57: 3131-4.

Li L, Cohen SN (1996). Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85: 319-29.

Li L, Li X, Francke U, Cohen SN (1997). The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer. Cell 88: 143-54.

Lin PM, Liu TC, Chang JG, Chen TP, Lin SF (1998). Aberrant TSG101 transcripts in acute myeloid leukaemia. Br J Haematol 102: 753-8.

Ma L, Zhao X, Zhu X (2006). Mitosin/CENP-F in mitosis, transcriptional control, and differentiation. J Biomed Sci 13: 205-13.

Masumoto H, Nakano M (1996). [Functions of centromere protein B (CENP-B) and control of metaphase progression]. Tanpakushitsu Kakusan Koso 41: 1876-82.

Maucuer A, Camonis JH, Sobel A (1995). Stathmin interaction with a putative kinase and coiled-coil-forming protein domains. Proc Natl Acad Sci U S A 92: 3100-4.

McIver B, Grebe SK, Wang L, Hay ID, Yokomizo A, Liu W et al (2000). FHIT and TSG101 in thyroid tumours: aberrant transcripts reflect rare abnormal RNA processing events of uncertain pathogenetic or clinical significance. Clin Endocrinol (Oxf) 52: 749-57.

Minoshima Y, Hori T, Okada M, Kimura H, Haraguchi T, Hiraoka Y et al (2005). The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol Cell Biol 25: 10315-28.

Pan HY, Zhang YJ, Wang XP, Deng JH, Zhou FC, Gao SJ (2003). Identification of a novel cellular transcriptional repressor interacting with the latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 77: 9758-68.

Pickart CM (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503-33.

Pornillos O, Alam SL, Davis DR, Sundquist WI (2002). Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat Struct Biol 9: 812-7.

Robzyk K, Recht J, Osley MA (2000). Rad6-dependent ubiquitination of histone H2B in yeast. Science 287: 501-4.

Scheffner M, Nuber U, Huibregtse JM (1995). Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373: 81-3.

Schlesinger DH, Goldstein G, Niall HD (1975). The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry 14: 2214-8.

Traub LM, Lukacs GL (2007). Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. J Cell Sci 120: 543-53.

Ungureanu D, Silvennoinen O (2005). SLIM trims STATs: ubiquitin E3 ligases provide insights for specificity in the regulation of cytokine signaling. Sci STKE 2005: pe49.

Wang NM, Chang JG, Liu TC, Lin SF, Peng CT, Tsai FJ et al (2000). Aberrant transcripts of FHIT, TSG101 and PTEN/MMAC1 genes in normal peripheral mononuclear cells. Int J Oncol 16: 75-80.

Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006). Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 8: 398-406.

Zhong Q, Chen CF, Chen Y, Chen PL, Lee WH (1997). Identification of cellular TSG101 protein in multiple human breast cancer cell lines. Cancer Res 57: 4225-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.72.11
論文開放下載的時間是 校外不公開

Your IP address is 3.147.72.11
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code