Responsive image
博碩士論文 etd-0829111-203028 詳細資訊
Title page for etd-0829111-203028
論文名稱
Title
CuInSe2:Sb薄膜太陽電池元件研製
Fabrication of CuInSe2:Sb thin-film solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-27
繳交日期
Date of Submission
2011-08-29
關鍵字
Keywords
共蒸鍍、低溫製程、摻Sb、薄膜太陽電池
Co-evaporation, Low temperature process, Sb, CIS, CIGS, Thin-film solar cells
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
本研究於鈉玻璃基板上製作CuInSe2(簡稱CIS)薄膜太陽電池元件,結構為Al/ZnO:Al/ZnO/CdS/CIS/Mo/SLG,以兩階段(2-stage)共蒸鍍的方式成長CIS主吸收層,藉由摻入Sb改善薄膜的表面形貌和晶粒結構,並在450℃低溫下成長CIS:Sb薄膜。鉬(Mo)背電極以直流(DC)濺鍍於鈉玻璃基板上;緩衝層CdS以化學水浴法成長覆蓋;氧化鋅(ZnO)透光層以射頻(RF)濺鍍方式鍍製;再以直流(DC)濺鍍指狀鋁(Al)電極。
基板溫度450℃成長的CIS薄膜因表面粗糙且結構較為鬆散,一般需以550℃以上成長,經過實驗改良CIS薄膜的製程與調整組成後,550℃成長的CIS元件在模擬光源(AM 1.5,100 mW/cm2)的照射下,轉換效率可達7.4%(Voc=0.325 V,Jsc=48.54 mA/cm2,FF=45.1%)。另外將Ga加入CIS形成Cu(In,Ga)Se2四元化合物(簡稱CIGS),有助於增加能隙值及元件之開路電壓,CIGS元件轉換效率7.0%( Voc=0.392 V,Jsc=37.28 mA/cm2,FF=46.2%)。而以450℃低溫所成長的CIS:Sb元件轉換效率為8.0%( Voc=0.364 V,Jsc=48.16 mA/cm2,FF=44.5%),表現略優於550℃成長的CIS元件,研究顯示Sb的摻入能整平CIS薄膜表面,增加元件CIS與CdS 的P/N接面品質,並使結晶結構更加緻密,有助於開發CIS薄膜太陽電池元件的低溫製程。
Abstract
This research describes an investigation on the fabrication of CuInSe2-based thin-film solar cells with the device structure of Al/ZnO:Al/ZnO/CdS/CIS/Mo/SLG at the substrate temperature of 450oC, which is at least 100oC below the temperature currently used for depositing CIS thin films. A great advantage for the low temperature process is that the polymer material can be used as substrate and it is feasible to make lightweight and flexible thin-film solar cells. In this work, we used a co-evaporation technique with an introduction of Sb during the film deposition process to modify the film growth mechanisms and produce the CIS film with compact grain structure and smooth surface morphology. In most cases, there was only tiny amount of Sb existed in the film as a p-type dopant. In some cases, second phases of Sb compounds could be detected in the film as the Sb flux was kept too high during the film deposition stage.
The I-V characteristics measured under the AM1.5 condition for the solar cell using a CIS:Sb film as the absorber showed that the open circuit voltage (Voc) was 0.364 V, short circuit current (Jsc) was 48.16 mA/cm2, fill factor (FF) was 44.5%, and energy conversion efficiency (η) was 8%. The device with the same layer structure except the use of CIS film prepared without the addition of Sb and at a higher substrate temperature of 550oC had a comparable device performance but a slightly lower efficiency, i.e. Voc=0.325 V, Jsc=48.54 mA/cm2, FF=45.1%, η=7.4%. It is clear that a lower temperature process using Sb to modify the growth process can be successful to obtain a device quality CIS layer. In addition, a CIGS thin-film solar cell was also fabricated and its device properties were Voc=0.392 V, Jsc=37.28 mA/cm2, FF=46.2%, and η=7.0%. We see that the addition of Ga to increase the bandgap do increase the Voc and decrease the Jsc. However, a low efficiency of this cell indicates that further improvement in fill factor of the cell is a necessary.
目次 Table of Contents
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
一、簡介 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 CuInSe2複晶薄膜性質 2
1.2.2 CuInSe2薄膜太陽電池發展 5
1.2.3 CuInSe2:Sb複晶薄膜性質 6
1.3 太陽電池元件簡介 8
1.3.1 太陽電池工作原理 8
1.3.2 太陽電池特性與效率 9
1.4 CI(G)S元件結構及各層膜特性 11
1.4.1 CI(G)S元件結構 11
1.4.2 基板 12
1.4.3 背電極Mo 15
1.4.4 主吸收層CuInSe2 15
1.4.5 緩衝層CdS 16
1.4.6 本質透光層ZnO 16
1.4.7 透光導電層 ZnO:Al 16
1.4.8 指狀電極Al 17
1.5研究動機與目的 17
二、實驗步驟、製程與分析儀器 19
2.1 實驗製程系統 19
2.1.1 磁控濺鍍系統 19
2.1.2 分子束蒸鍍系統 20
2.2 實驗流程與步驟 21
2.3 各層薄膜製備 22
2.3.1基板處理 22
2.3.2 背電極Mo 23
2.3.3 主吸收層CuInSe2:Sb 23
2.3.4 緩衝層CdS 25
2.3.5 透光層ZnO和指狀電極Al 25
2.4 薄膜分析儀器 27
2.4.1 四點探針 27
2.4.2 熱探針 27
2.4.3 X光繞射分析 28
2.4.4 掃描式電子顯微鏡 28
2.4.5 吸收光譜儀 28
2.4.6 反射光譜儀 29
2.4.7 電流-電壓特性曲線與效率計算 29
三、結果與討論 30
3.1 CuInSe2薄膜與元件 30
3.1.1 單層Cu-rich CuInSe2薄膜 30
3.1.2 雙層結構(Bilayer)之CuInSe2薄膜 31
3.1.3 CIS元件1 34
3.1.4 CIS元件2 37
3.2 Cu(In,Ga)Se2薄膜與元件 38
3.2.1 CIGS元件1 41
3.2.2 CIGS元件2 43
3.3 CuInSe2:Sb薄膜與元件 45
3.3.1 組成控制與Sb分子束通量 45
3.3.2 摻Sb之CuInSe2薄膜SEM分析 48
3.3.3 CuInSe2:Sb太陽電池元件 50
3.4 CIS、CIGS與CIS:Sb元件 54
四、結論 60
五、參考文獻 61

參考文獻 References
[1] M. Kaelin, D. Rudmann, A.N. Tiwari, Low cost processing of CIGS thin film solar cells. Solar Energy 77 (2004) 749–756.
[2]W.G. Adams and R.E. Day, Proc. R. Soc., 1877. A25: p. 113.
[3]M.A. Contreras, H. Wiesner, D. Niles, K. Ramanathan, R. Maston, J. Keane, and R. Noufi, the 25th IEEE Photovoltaic Specialist Conference, Washington, D.C. 1996.
[4] R. Woodyard and G.A. Candies, Solar Cells,31(1991),297.
[5] N. Chu and D. Honeman,Solar Cells,31(1991)197.
[6] B.J. Stanbery, Copper indium selenides and related materials for photovoltaic devices. Critical Reviews in Solid State & Materials Science, 27(2), 73. (2002).
[7] B.M. Bagol, V.K. Kapur, A. Halani, A. Minnick and C. Leidholm, Photovoltaic Specialists Conference,1993.,Conference Record of the Twenty Third IEEE.
[8] Yoshihiro Hamakawa, Thin-film solar cells : next generation photovoltaics and its applications, Berlin ; New York : Springer,2004, p.164~169.
[9] F. Abou-Elfotouh, D.J. Dunlavy and T.J. Coutts; Solar Cell,237,(1986),p27.
[10] H.H. Chang, T.X. Zhong, H.Y. Ueng and H.L. Hwang, New Perspectives of Defect Physics and Defect Chemistry for Copper Ternary Chalcopyrite Semiconductors.
[11] J.L. Shay & J.H. Wernick, (1975). Ternary chalcopyrite semiconductors: growth, electronic properties, and applications, Pergamon Press, Oxford.
[12]R.A. Mickelsen, W.S. Chen, Y.R. Hsiao, V.E. Lowe, IEEE Trans. Electron Devices, 31, p542, 1984.
[13] T. Negami, T. Satoh, Y. Hashimoto, S. Nishiwaki, S.I. Shimakawa, S. Hayash, Large-area CIGS absorbers prepared by physical vapor deposition. Solar Energy Materials & Solar Cells, 67 (2001) 1-9.
[14] http://www.nrel.gov/news/press/2008/574.html
[15]B.M. Basol, V.K. Kapur, C.R. Leidholm, A. Halani, K. Sol. Energy Mater. Sol. Cells 29, p163, 1993.
[16] B.M. Basol, V.K. Kapur, C.R. Leidholm, A. Halani, K. Gldhil, Sol. Energy Mater. Sol. Cells 43, p93, 1996.
[17] Friedrich Kessler, Dominik Rudmann, Technological aspects of flexible CIGS solar cells and modules. Solar Energy 77 (2004) 685–695.
[18] K. Herz, A. Eicke, F. Kessler, R. Wachter, M. Powalla, Diffusion barriers for CIGS solar cells on metallic substrates. Thin Solid Films 431 –432 (2003) 392–397.
[19] F. Kessler, D. Herrmann, M. Powalla, Approaches to flexible CIGS thin-film solar cells. Thin Solid Films 480–481 (2005) 491–498.
[20] Y. Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications, p173.
[21] K. Yoshino, T. Hata, T. Kakeno, H. Komaki, M. Yoneta, Y. Akaki, and T. Ikari, Electrical and optical characterization of n-type ZnO thin films. Phys. Stat. Sol. (c) 0, No. 2, 626–630 (2003).
[22]M. Powalla, B. Dimmler, Thin Solid Films 387, p251, 2001.
[23]L. Stolt, J. Hedstrom, M. Ruckh, K.O. Velthaus, H.W. Schock, ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance. Appl. Phys. Lett. 62 (1993) 597.
[24]K. Granath, M. Bodegard, L. Stolt, Sol. Energy Mat. Sol. Cells 60 (2000) 279.
[25]Min Yuan, David B. Mitzi,, Wei Liu,Andrew J. Kellock, S. Jay Chey, and Vaughn R. Deline(2010) Optimization of CIGS-Based PV Device through Antimony Doping. Chem. Mater. 22, 285–287.
[26]U. Rau, M. Schmidt, A. Jasenek, G. Hanna, & H.W. Schock, (2001). Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance. Solar Energy Materials and Solar Cells, 67(1-4), 137-143.
[27] Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz,
Richard Menner, Wiltraud Wischmann and Michael Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. 25th EU PVSEC WCPEC-5, Valencia, Spain, 2010.
[28]張宗文,Sb 摻入對CuInSe2薄膜成長與特性之影響,國立中山大學材料科學研究所碩士論文(1994)
[29]徐有欽,CuInSe2:Sb複晶薄膜太陽能電池之研究,國立中山大學材料科學研究所碩士論文(2003)
[30] B.H. Tseng, G.W. Chang, and S.B. Lin, Influences of Sb on the Growth and Properties of CuInSe2 Thin Films. Japanese Journal of Applied Physics, Vol. 34, pp. 1109-1112(1995).
[31]http://pveducation.org/pvcdrom
[32] John H. Scofield, A. Duda and D. Albin, Sputtered Molybdenum Bilayer Back Contact for Copper Indium Diselenide-Based Polycrystalline Thin-Film Solar Cells. Thin Solid Films, 260 (1), pp. 26-31 (May 1, 1995).
[33] Takayuki Negami, Yasuhiro Hashimoto, Shiro Nishiwaki, Cu(In,Ga)Se2 thin-film solar cells with an efficiency of 18%. Solar Energy Materials & Solar Cells 67 (2001) 331-335.
[34] W.N. Shafarman, R.W. Birkmire, S. Marsillac, M. Marudachalam, N. Orbey, Russell, T.W.F., Effect of reduced deposition temperature, time and thickness on
Cu(In,Ga)Se2 films and devices. In: Conference Record of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, CA, pp. 331-334 (1997).
[35]S. Marsillac, S. Dorn, R. Rocheleau, E. Miller, Solar Energy Material & Solar cells 82, p45-52, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.114.94
論文開放下載的時間是 校外不公開

Your IP address is 3.138.114.94
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code