Responsive image
博碩士論文 etd-0829112-114350 詳細資訊
Title page for etd-0829112-114350
論文名稱
Title
具強健性之重複控制器應用於直流至交流轉換器
Robust Repetitive Control of DC/AC Converter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-08-09
繳交日期
Date of Submission
2012-08-29
關鍵字
Keywords
諧波失真、零相位補償控制器、線性二次調節器(LQR)、回授擾動調變、單相直流至交流轉換器、重複控制
zero phase error track control, linear quadratic regulator, feedback dithering modulation, harmonic distortion, repetitive control, single-phase DC to AC converter
統計
Statistics
本論文已被瀏覽 5644 次,被下載 1953
The thesis/dissertation has been browsed 5644 times, has been downloaded 1953 times.
中文摘要
本論文利用數位控制器實現重複控制於單相直流至交流電源轉換器上,使得
輸出的交流電壓源具有較低諧波失真,且在負載變動下有較佳的強健性。
單相直流至交流電源轉換器在實際的應用上會遭遇到不同型態的負載,如線
性負載、整流性負載等等,在不同的負載操作下會使得電源轉換系統的輸出電源
品質受到影響,為了有效的提高電源轉換器的供應品質,必須對於電源轉換系統
加以控制,以追求高品質的交流電壓源輸出。本論文致力於在不同負載操作下改
善電源轉換系統的電壓總諧波失真。其中重複控制器用來設計消除週期性擾動訊
號,此控制器應用在單相直流對交流電源轉換器能有效的抑制諧波失真,並結合
了迴授擾動調變技術與最佳化狀態迴授控制,使得電源轉換器對於負載變動有較
佳的強健性。
實現本論文單相直流對交流電源轉換器的架構,使用場效可規劃邏輯陣列元
件(Field-Programmable Gate Arrays, FPGA)做為數位化控制之核心,實際測試後證
明,輸出電壓總諧波失真(THD)操作在無載、線性負載以及非線性負載的情況下皆
可以壓抑在 0.5%以下,展現了優異的效能與強健性。
Abstract
This thesis applies digital repetitive control to a single-phase DC-to-AC converter,
with some proposed designs to improve stability and enhance performance of the
converter under various load variations.
A practical DC-to-AC converter is required to convert DC power to stable AC
power with low harmonic distortion when attached to various linear or nonlinear loads.
This thesis combines repetitive control with feedback dithering modulation and optimal
state feedback to control the converter. The repetitive control is responsible for
regulating output power and eliminating harmonics, while the feedback dithering
modulation for switching the power transistors with reduced switching noise and the
state feedback for stabilizing the converter under various load variations.
The presented control and modulation schemes of the power converter are
implemented on an FPGA (Field Programmable Gate Array). The experiments confirm
the excellent performance and robustness of the converter, indicating a total harmonic
distortion of less than 0.5% for the converter when attached to various linear or
nonlinear loads.
目次 Table of Contents
目錄
論文審定書....................................................................................................................... i
中文摘要...........................................................................................................................ii
英文摘要......................................................................................................................... iii
第一章 緒論 .................................................................................................................... 1
1-1 研究動機與目的 ............................................................................................... 1
1-2 文獻回顧 ........................................................................................................... 3
1-3 論文組織與貢獻 ............................................................................................... 5
第二章 重複控制理論分析與設計 ................................................................................ 7
2-1 重複控制之基本理論 ....................................................................................... 7
2-2 重複控制器之架構 ........................................................................................... 9
2-2.1 週期性訊號產生器 ................................................................................ 9
2-2.2 基本重複控制器架構與穩定度分析 .................................................. 10
2-2.3 重複控制器之補償器 .......................................................................... 14
2-3 零相位低通濾波器之設計 ............................................................................. 14
第三章 單相直流至交流轉換之調變器、狀態回授補償與重複控制 ...................... 18
3-1 直流至交流轉換器系統架構 ......................................................................... 18
3-2 回授擾動調變技術 ......................................................................................... 22
3-3 受控廠之狀態回授補償設計 ........................................................................ 28
3-4 應用重複控制器於單相直流至交流轉換器 ................................................. 31
第四章 單相直流至交流轉換器於數位電路實現與性能量測 .................................. 38
4-1 系統實作架構與規格 ..................................................................................... 38
4-2 週邊電路設計 ................................................................................................. 40
4-2.1 感測電路 ............................................................................................... 40
4-2.2 數位控制器 ........................................................................................... 42
4-2.3 驅動與隔離電路 ................................................................................... 43
4-3 實驗量測結果與模擬結果比較 ..................................................................... 44
第五章 結論 .................................................................................................................. 50
參考文獻 ........................................................................................................................ 51
參考文獻 References
參考文獻
[1] T. Inoue, M. Nakano, T. Kubo, and S. Matsumoto, “High accuracy control of a
proton synchrotron magnet power supply,” Proceedings of the 8th IFAC World
Congress, vol. 20, pp. 216-221, 1981.
[2] B. A. Francis and W. M. Wonham, “The internal model principle for linear
multivariable regulators,” Applied Mathematics & Optimization, vol. 2, no. 2, pp.
170-194, 1975.
[3] S. Hara, Y. Yamammoto, T. Omata, and M. Nakano, “Repetitive control system : A
new type servo system for periodic exogenous signals,” IEEE Transactions on
Automatic Control , vol. 33, no. 7, pp. 659-668, July 1988.
[4] M. Tomizuka, T. Tsao, and K. Chew, “Analysis and synthesis of discrete-time
repetitive controllers,” Trans. ASME J. Dynamic Syst., Meas., and Contr., vol. 111,
no. 3, pp. 353-358, September 1989.
[5] K. K. Chew, and M. Tomizuka, “Steady-state and stochastic performance of a
modified discrete-time prototype repetitive controller,” Trans. ASME J. Dynamic
Syst., Meas., and Contr., vol. 112, no. 1, pp. 35-41, 1990.
[6] W. Messner, R. Horowitz, W. W. Kao, and M. Boals, “A new adaptive learning rule,”
IEEE Transactions on Automatic Control, vol. 36, no. 2, pp. 188-197, February
1991.
[7] Jian-Xin Xu, and Zhihua Qu, “Robust learning control for a class of nonlinear
systems,” Proceedings of the 35th IEEE Decision and Control, vol. 3, pp.
2484-2489, December 1996.
[8] K. Zhou, D. Wang, and K. S. Low, “Periodic errors elimination in CVCF PWM
DC/AC converter systems: repetitive control approach,” IEE Proc., Control Theory
Appl., vol. 147, no. 6, pp. 694-700, 2000.
[9] Y. Y. Tzou, S. L. Jung, and H. C. Yeh, ”Adaptive repetitive control of PWM inverters
for very low THD AC-voltage regulation with unknown loads,” IEEE Transactions
on Power Electronics, vol. 14, no. 5, pp. 973–981, Sept. 1999.
[10] G. Escobar, A.A. Valdex, and J. Leyva-Ramos, and P. Mattavelli, ”Repetitive-based
controller for a UPS inverter to compensate unbalance and harmonic distortion,”
IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 504–510, Feb.
2007.
[11] Y. Onuki, and H. Ishioka, “Compensation for repeatable tracking errors in hard
drives using discrete-time repetitive controllers,” IEEE/ASME Trans. Mechatronics,
vol. 6, no. 2, pp. 132-136, Jun. 2001.
[12] K. Srinivasan, and F. R. Shaw, “Analysis and design of repetitive control systems
using the regeneration spectrum,” Trans. ASME J. Dynamic Syst., Meas., and
Contr., vol. 113, pp. 216-222, 1991.
[13] F. R. Shaw, and K. Srinivasan, “Discrete-time repetitive control system design
using the regeneration spectrum,” Trans. ASME J. Dynamic Syst., Meas., and
Contr., Vol. 115, no. 2, pp. 228-237, 1993.
[14] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” Trans.
ASME J. Dynamic Syst., Meas., and Contr., vol. 109, pp. 65-68, March 1987.
[15] K. Zhang, Y. Kang, J. Xiong, and J. Chen, “Direct Repetitive Control of SPWM
Inverter for UPS Purpose,” IEEE Transactions on Power Electronics, vol. 18, no. 3,
pp. 784-792, May 2003.
[16] 曾瀚陞,
應用回授擾動法則於換流器之調變與控制
, 國立中山大學碩士論文,
2011.
[17] Shiang-Hwua Yu, Ting-Yu Wu, and Sing-Han Wang, “Extension of pulse width
modulation from carrier-based to dither-based,” submitted to IEEE Transactions on
Industrial Informatics.
[18] D. Milosavljevic, “General conditions for the existence of a quasi-sliding mode on
the switching hyperplane in discrete variable structure systems,” Automation &
Remote Control, vol. 46, pp. 304-314, 1985.
[19] S. Z. Sarpturk, Y. Istefanopulos, and O. Kaynak, “On the stability of discrete-time
sliding mode control systems,” IEEE Transactions on Automatic Control, vol. 32,
pp. 930-932, Oct. 1987.
[20] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods,
New Jersey: Prentice-Hall, 1990.
[21] S. H. Yu and M. H. Tseng, “Optimal control of a nine-level class-D audio amplifier
using sliding-mode quantization,” IEEE Transactions on Industrial Electronics, vol.
58, no. 7, pp. 3069-3076, 2011.
[22] Y. Y. Tzou, R. S. Ou, S. L. Jung, and M. Y. Channg, “High-performance
programmable AC power source with low harmonic distortion using DSP-based
repetitive control technique,” IEEE Transactions on Power Electronics, vol. 12, no.
4, pp. 715-725, July 1997.
[23] Y. Ye, B. Zhang, K. Zhou, D. Wang and Y. Wang, “High-performance cascade-type
repetitive controller for CVCF PWM inverter: analysis and design,” IET Electr.
Power Appl., vol. 1, no. 1, pp. 112-118, January 2007.
[24] Kai Zhang, Yong Kang, Jian Xiong, and Jian Chen, “Direct repetitive control of
SPWM inverter for UPS purpose,” IEEE Transactions on Power Electronics, vol.
18, no. 3, pp. 784-792, May 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code