Responsive image
博碩士論文 etd-0829112-142316 詳細資訊
Title page for etd-0829112-142316
論文名稱
Title
生醫材料機械性質測定之研究
The Determination of Mechanical Properties of Biomedical Materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-03
繳交日期
Date of Submission
2012-08-29
關鍵字
Keywords
TiN薄膜、象牙質、琺瑯質、曲線擬合、楊氏模數、血管、生醫材料
TiN thin film, dentine, enamel, curve-fitting, Young’s modulus, artery, biomedical material
統計
Statistics
本論文已被瀏覽 5724 次,被下載 2569
The thesis/dissertation has been browsed 5724 times, has been downloaded 2569 times.
中文摘要
本文之研究目的主要探討生醫材料機械性質之測定,利用拉力試驗機進行主動脈及冠狀動脈之擴張與拉伸試驗,基於生物軟組織不可壓縮之條件,可以獲得血管應力-拉伸率曲線。利用非線性Ogden材料模型曲線擬合實驗結果,所得出之材料常數應用於血管支架之有限元素模擬,可以成功模擬血管支架膨脹及回彈過程。
利用微米壓痕試驗量測人類牙齒琺瑯質與象牙質之機械性質,透過變化壓痕試驗參數測量楊氏模數,藉以探討參數對於量測值之影響。『最大負載』參數對於楊氏模數測量值影響很大,建議最大負載在10 ~ 100 mN範圍內,可以獲得較穩定之測量值。『卸載曲線採用比率』與『年齡』參數對於楊氏模數測量值並不敏感。
本文提出結合有限元素法及最佳化原理,以曲線擬合微米壓痕試驗加載及卸載過程之負載-壓痕深度曲線,可以成功萃取矽基底及薄膜之機械性質,包括楊氏模數、降伏強度及應變硬化指數。所萃取出之0.2 ~ 1.4 μm TiN薄膜楊氏模數均比文獻塊材數值400 GPa為低,當薄膜厚度小於0.8 μm時,楊氏模數隨著厚度減少而下降。由此可以推論薄膜厚度0.8 μm可能是使用塊材材料性質之巨觀力學之上界。
Abstract
The mechanical properties of biomedical materials were determined and discussed in this study. The extension and tensile tests for aorta and coronary artery were carried out using tensile testing machine. Based on incompressibility of biological soft tissue, the stress-stretch curves of arteries were obtained. This study proposed a nonlinear Ogden material model for the numerical simulation of coronary artery extension during stent implantation. The corresponding Ogden model parameters were derived by the obtained stress-stretch curves from tensile tests. For validation, the proposed nonlinear Ogden material model for coronary artery was applied to a Palmaz type stent implantation process. The simulated stent deformation was found to be reasonable. It had a good correlation with the measured results.
The microindentation experiments were used to measure the mechanical properties of enamel and dentine of human teeth in this study. To reveal the relation between the experimental parameters and measured mechanical properties, Young’s moduli were investigated by varying experimental parameters. The parameter of maximum indentation load significantly influences measured values. Young’s modulus varies very slightly when 10 to 100 mN of maximum indentation load applied. Young’s modulus is not sensitive to the parameters of portion of unloading data and teeth age.
The combination of finite element analysis and curve-fitting method is proposed to determine the mechanical properties of thin film deposited on substrate. The mechanical properties of thin film, i.e. Young’s modulus, yield strength and strain-hardening exponent, were extracted by applying an iterative curve-fitting scheme to the experimental and simulated force-indentation depth curves during the microindentation loading and unloading processes. The variation of mechanical properties of TiN thin films with thicknesses ranging from 0.2 to 1.4 μm was extracted. The results presented the film thickness effect makes the Young’s modulus of TiN thin films reduces with reducing film thickness, particularly at thicknesses less than 0.8 μm. Therefore, it can be inferred that a film thickness of 0.8 μm possibly represents the upper bound when employing macroscopic mechanics with bulk material properties.
目次 Table of Contents
致謝................................................................................................................................... i
摘要.................................................................................................................................. ii
Abstract........................................................................................................................... iii
目錄.................................................................................................................................. v
表目錄............................................................................................................................ vii
圖目錄........................................................................................................................... viii
符號說明......................................................................................................................... xi
第一章 緒論................................................................................................................ 1
1-1 前言................................................................................................................ 1
1-1-1 簡介....................................................................................................... 1
1-1-2 血管機械性質之量測........................................................................... 3
1-1-3 人類牙齒機械性質之量測................................................................... 5
1-1-4 生醫材料鍍膜機械性質之測定........................................................... 5
1-2 研究動機與方法............................................................................................ 5
1-3 文獻回顧........................................................................................................ 6
1-4 組織與章節.................................................................................................. 11
第二章 血管機械性質之量測.................................................................................. 13
2-1 非線性Ogden材料模型.............................................................................. 13
2-2 血管試件拉伸試驗...................................................................................... 14
2-2-1 血管試件............................................................................................. 15
2-2-2 拉伸試驗............................................................................................. 23
2-2-3 周向應力-拉伸率曲線........................................................................ 29
2-2-4 軸向應力-拉伸率曲線........................................................................ 30
2-3 試驗結果...................................................................................................... 32
第三章 人類牙齒機械性質之量測.......................................................................... 50
3-1 微米壓痕試驗.............................................................................................. 50
3-2 壓痕試驗數據之分析理論.......................................................................... 52
3-3 微米壓痕實驗設備系統.............................................................................. 62
3-4 不鏽鋼與純銅微米壓痕實驗...................................................................... 65
3-4-1 實驗試件與實驗項目......................................................................... 65
3-4-2 實驗結果............................................................................................. 72
3-5 人類牙齒微米壓痕實驗.............................................................................. 84
3-5-1 實驗試件與實驗項目......................................................................... 84
3-5-2 實驗結果............................................................................................. 85
第四章 生醫材料鍍膜機械性質之測定................................................................ 110
4-1 薄膜微米壓痕實驗.................................................................................... 110
4-2 有限元素數值模擬.................................................................................... 110
4-2-1 有限元素模型................................................................................... 111
4-2-2 模擬分析程序................................................................................... 114
4-3 模擬分析結果............................................................................................ 117
4-3-1 萃取矽基底之機械性質................................................................... 117
4-3-2 萃取TiN薄膜之機械性質............................................................... 123
4-3-3 TiN薄膜厚度效應............................................................................ 123
第五章 結論............................................................................................................ 129
5-1 總結............................................................................................................ 129
5-2 未來展望.................................................................................................... 130
參考文獻...................................................................................................................... 131
參考文獻 References
[1] F. P. Beer and E. R. Johnston, Jr., Mechanics of Materials, McGraw-Hill, New York, USA, 1981.
[2] K. Hayashi, J. D. Humphrey, R. W. Ogden, G. A. Holzapfel, A. D. McCulloch, A. Rachev, and T. P. Usyk, Biomechanics of soft tissue in cardiovascular systems. In: Holzapfel GA, Ogden RW (Eds.), Courses and lectures- No.441 of international center for mechanical sciences in Udine, Italy 2001, Springer Wein, New York, USA, 2003.
[3] D. M. Ebenstein and L. Pruitt, “Nanoindentation of Biological Materials,” Nanotoday, Vol. 1, pp. 26-33, 2006.
[4] F. Z. Cui and D. J. Li, “A Review of Investigations on Biocompatibility of Diamond-like Carbon and Carbon Nitride Films,” Surface & Coatings Technology, Vol. 131, pp. 481-487, 2000.
[5] N. J. Ianno, R. O. Dillon, and A. A. Ahmad, “Deposition of Diamond-like Carbon on a Titanium Biomedical Alloy,” Thin Solid Films, Vol. 270, pp. 275-278, 1995.
[6] F. Alonso, J. J. Ugarte, D. Sansom, J. L. Viviente, and J. I. Onate, “Effects of Ion Implantation on Ti-6Al-4V on its Frictional Behaviour against UHMWPE,” Surface & Coatings Technology, Vol. 83, pp. 301-306, 1996.
[7] A. P. Serro, C. Completo, R. Colaço, F. dos Santos, C. Lobato da Silva, J. M. S. Cabral, and H. Araújo, “A Comparative Study of Titanium Nitrides, TiN, TiNbN and TiCN, as Coatings for Biomedical Applications,” Surface & Coatings Technology, Vol. 203, pp. 3701-3707, 2009.
[8] M. Balaceanu, T. Petreus, V. Braic, C. N. Zoita, A. Vladescu, C. E. Cotrutz, and M. Braic, “Characterization of Zr-based Hard Coatings for Medical Implant Applications,” Surface & Coatings Technology, Vol. 204, pp. 2046-2050, 2010.
[9] E. Santos Jr., N. K. Kuromoto, and G. A. Soares, “Mechanical Properties of Titania Films used as Biomaterials,” Materials Chemistry and Physics, Vol. 102, pp. 92-97, 2007.
[10] X. Li and B. Bhushan, “A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications,” Materials Characterization, Vol. 48, pp. 11-36, 2002.
[11] H. Misubayashi, J. Matsuno, and H. Tanimoto, “Young’s Modulus of Silver Films,” Scripta Materialia, Vol. 41, pp. 443-448, 1999.
[12] T. Yamaguchi, H. Mizubayashi, Y. Yashihara, W. Song, A. Yamaguchi, and R. Yamamoto, “Effects of Annealing on the Elastic Properties of Ag/Pd Multilayer Films,” Journal of Magnetism and Magnetic Materials, Vol. 156, pp. 279-280, 1996.
[13] J. Quemper, S. Nicolas, J. P. Gilles, J. P. Grandchamp, A. Bosseboeuf, T. Bourouina, and E. Dufour-Gergam, “Permalloy Electroplating through Photoresist Molds,” Sensors and Actuators, Vol. 74, pp. 1-4, 1999.
[14] I. Chasiotis and W. G. Knauss, “The Mechanical Strength of Polysilicon Films: Part 1. The Influence of Fabrication Governed Surface Conditions,” Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1533-1550, 2003.
[15] X. Li, T. Ono, Y. Wang, and M. Esashi, “Ultrathin-single-crystalline-sillicon Cantilever Resonators: Fabrication Technology and Significant Specimen Size Effect on Young’s Modulus,” Applied Physics Letters, Vol. 83, pp. 3081-3083, 2003.
[16] L. Kiesewetter, J. M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young’s Moduli of Micromechanical Thin Film using the Resonance Method,” Sensors and Actuators A, Vol. 35, pp. 153-159, 1992.
[17] O. Tabata, T. Tsuchiya, and S. Fujisuka, “Poisson’s Ratio Evaluation of the Thin Film for Sensor Application,” Technical Digest of the 12th Sensor Symposium, pp. 19-22, 1994.
[18] P. M. Osterberg and S. D. Senturia, “M-test: a Test Chip for MEMS Material Property Measurement using Electrostatically Actuated Test Structures,” Journal of Microelectromechanical Systems, Vol. 6, No. 2, pp. 107-118, 1997.
[19] T. Tsuchiya, O. Tabata, J. Sakata, and Y. Taga, “Specimen Size Effect on Tensile Strength of Surface-micromachined Polycrystalline Silicon Thin Films,” Journal of Microelectromechanical Systems, Vol. 7, No. 1, pp. 106-113, 1998.
[20] W. C. Oliver and C. J. Mchargue, “Characterizing the Hardness and Modulus of Thin Films using Mechanical Properties Microprobe,” Thin Solid Film, Vol. 161, pp. 117-122, 1988.
[21] G. M. Pharr and W. C. Oliver, “On the Generality of the Relationship among Contact Stiffness, Contact Area, and Elastic Modulus during Indentation,” Journal of Materials Research, Vol. 7, pp. 613-617, 1992.
[22] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7, pp. 1564-1583, 1992.
[23] Y. Choi, K. J. van Vliet, J. Li, and S. Suresh, “Size Effect on the Onset of Plastic Deformation during Nanoindentation of Thin Films and Patterned Lines,” Journal of Applied Physics, Vol. 94, pp. 6050-6058, 2003.
[24] R. Saha and W. D. Nix, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation,” Acta Materialia, Vol. 50, pp. 23-38, 2002.
[25] N. Yu, A. A. Polycarpou, and T. F. Conry, “Tip-radius Effect in Finite Element Modeling of Sub-50 nm Shallow Nanoindentation,” Thin Solid Films, Vol. 450, pp. 295-303, 2004.
[26] K. S. Chen, T. C. Chen, and K. S. Ou, “Development of Semi-empirical Formulation for Extracting Materials Properties from Nanoindentation Measurements: Residual Stresses, Substrate Effect, and Creep,” Thin Solid Films, Vol. 516, pp. 1931-1940, 2008.
[27] S. A. R. Pulecio, M. C. M. Farias, and R. M. Souza, “Finite Element and Dimensional Analysis Algorithm for the Prediction of Mechanical Properties of Bulk Materials and Thin Films,” Surface & Coatings Technology, Vol. 205, pp. 1386-1392, 2010.
[28] 簡麗華,魏玲玲,龔珊華,蔡欣玲,楊美珠,黃惠美,郭世音,鄭素月,謝明慧,內外科護理學,中冊,華杏出版社,台北,中華民國,1988年。
[29] P. G. Sanders, J. A. Eastman, and J. R. Weertman, “Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium,” Acta Materialia, Vol. 45, pp. 4019-4025, 1997.
[30] M. Wittling, A. Bendavid, P. J. Martina, and M. V. Swain, “Influence of Thickness and Substrate on the Hardness and Deformation of TiN Films,” Thin Solid Films, Vol. 270, pp. 283-288, 1995.
[31] C. Feezor, A. Tajaddini, D. Kilpatrick, D. G. Vince, and D. Jacobson, “Integration of Animal and Human Coronary Tissue Testing with Finite Element Techniques for Assessing Differences in Arterial Behavior,” American Society of Mechanical Engineers, Bioengineering Division, Vol. 50, pp.135-136, 2001.
[32] C. J. van Andel, P. V. Pistecky, and C. Borst, “Mechanical Properties of Coronary Arteries and Internal Mammary Arteries Beyond Physiological Deformations,” In proceedings of the 23th Annual EMBS International Conference, Istanbul, Turkey, pp.113-115,2001.
[33] C. J. van Andel, P. V. Pistecky, and C. Borst, “Mechanical Properties of Porcine and Human Arteries: Implications for Coronary Anastomotic Connectors,” The Annals of Thoracic Surgery, Vol. 76, pp.58-64, 2003.
[34] K. L. Monson and W. Goldsmith, “Axial Mechanical Properties of Fresh Human Cerebral Blood Vessels,” Journal of Biomechanical Engineering, Vol. 125, pp.288-294, 2003.
[35] K. L. Monson, W. Goldsmith, N. M. Barbaro, and G. T. Manley, “Significance of Source and Size in the Mechanical Response of Human Cerebral Blood Vessels,” Journal of Biomechanics, Vol. 38, pp.737-744, 2005.
[36] F. H. Silver, P. B. Snowhill, and D. J. Foran, “Mechanical Behavior of Vessel Wall: a Comparative Study of Aorta, Vena Cava, and Carotid Artery,” Annals of Biomedical Engineering, Vol. 31, pp.793-803, 2003.
[37] P. B. Snowhill and F. H. Silver, “A Mechanical Model of Porcine Vascular Tissues - Part II: Stress-strain and Mechanical Properties of Juvenile Porcine Blood Vessels,” Cardiovascular Engineering: An International Journal, Vol. 5, pp.157-169, 2005.
[38] M. W. Claridge, G. R. Bate, P. R. Hoskins, D.J. Adam, A. W. Bradbury, and A. B. Wilmink, “Measurement of Arterial Stiffness in Subjects with Vascular Disease: Are Vessel Wall Changes More Sensitive than Increase in Intima-media Thickness,” Atherosclerosis, Vol. 205, pp. 477-480, 2009.
[39] C. A. D. Leguy, E. M. H. Bosboom, H. Gelderblom, A. P. G. Hoeks, and F. N. van de Vosse, “Estimation of Distributed Arterial Mechanical Properties using a Wave Propagation Model in a Reverse Way,” Medical Engineering & Physics, Vol. 32, pp. 957-967, 2010.
[40] Z. Zou, X. Xu, Y. Huang, X. Xiao, L. Ma, T. Sun, P. Dong, X. Wang, and X. Lin, “High Serum Level of Lutein May Be Protective against Early Atherosclerosis: the Beijing Atherosclerosis Study,” Atherosclerosis, Vol. 219, pp. 789-793, 2011.
[41] T. Koponen, M. Hallikainen, J. Lipponen, T. Lyyra-Laitinen, P. A. Karjalainen, M. P. Tarvainen, C. Sittiwet, T. A. Miettinen, T. Laitinen, and H. Gylling, “Cholesterol Metabolism, Endothelial Dysfunction, and Carotid Artery Stiffness in Type 1 Diabetes,” Artery Research, Vol. 5, pp. 8-14, 2011.
[42] R. C. Kaplan, E. Sinclair, A. L. Landay, N. Lurain, A. R. Sharrett, S. J. Gange, X. Xue, C. M. Parrinello, P. Hunt, S. G. Deeks, and H. N. Hodis, “T Cell Activation Predicts Carotid Artery Stiffness among HIV-infected Women,” Atherosclerosis, Vol. 217, pp. 207-213, 2011.
[43] J. Peloquin, J. Huynh, R. M. Williams, and C. A. Reinhart-King, “Indentation Measurements of the Subendothedial Matrix in Bovine Carotid Arteries,” Journal of Biomechanics, Vol. 44, pp. 815-821, 2011.
[44] P. Tracqui, A. Broisat, J. Toczek, N. Mesnier, J. Ohayon, and L. Riou, “Mapping Elasticity of Atherosclerotic Plaque in situ via Atomic Force Microscopy,” Journal of Structural Biology, Vol. 174, pp. 115-123, 2011.
[45] G. A. Holzapfel, C. A. J. Schulze-Bauer, and M. Stadler, “Mechanics of angioplasty: wall, balloon and stent,” American Society of Mechanical Engineers, Applied Mechanics Division, Vol.242, pp. 141-154, 2000.
[46] F. Auricchio, M. Di Loreto, and E. Sacco, “Finite-element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion,” Computer Methods in Biomechanics and Biomechanical Engineering, Vol. 4, pp. 249-263, 2001.
[47] F. Migliavacca, L. Petrini, P. Massarotti, S. Schievano, F. Auricchio, and G. Dubini, “Stainless and Shape Memory Alloy Coronary Stents: a Computational Study on the Interaction with the Vascular Wall,” Biomechan Model Mechanobiol, Vol. 2, pp. 205-217, 2004.
[48] D. K. Liang, D. Z. Yang, M. Qi, and W. Q.Wang, “Finite Element Analysis of the Implantation of a Balloon-expandable Stent in a Stenosed Artery,” International Journal of Cardiology, Vol. 104, pp. 314-318, 2005.
[49] C. Lally, A. J. Reid, and P. J. Prendergast, “Elastic Behavior of Porcine Coronary Artery Tissue under Uniaxial and Equibiaxial Tension,” Annals of Biomedical Engineering, Vol. 32, pp. 1355–1364, 2004.
[50] C. Lally, F. Dlan, and P. J. Prendergast, “Cardiovascular Stent Design and Vessel Stresses: a Finite Element Analysis,” Journal of Biomechanics, Vol. 38, pp. 1574–1581, 2005.
[51] A. Pandit, X. Lu, C. Wang, and G. S. Kassab, ”Biaxial Elastic Material Properties of Porcine Coronary Media and Adventitia,” American Journal of Physiology-Heart and Circulatory Physiology, Vol. 288, pp.2581-2587, 2005.
[52] C. Wang, M. Garcia, X. Lu, Y. Lanir, and G. S. Kassab, ”Three-dimensional Mechanical Properties of Porcine Coronary Arteries: a Validated Two-layer Model,” American Journal of Physiology-Heart and Circulatory Physiology, Vol. 291, pp.1200-1209, 2006.
[53] M. Carboni, G. W. Desch, and H. W. Weizsacker, ”Passive Mechanical Properties of Porcine Left Circumflex Artery and Its Mathematical Description,” Medical Engineering & Physics, Vol. 29, pp.8-16, 2007.
[54] N. Gundiah, M. B. Ratcliffe, and L. A. Pruitt, “Determination of Strain Energy Function for Arterial Elastin: Experiments using Histology and Mechanical Tests,” Journal of Biomechanics, Vol. 40, pp.586-594, 2007.
[55] R. C. Kaplan, E. Sinclair, A. L. Landay, N. Lurain, A. R. Sharrett, S. J. Gange, X. Xue, C. M. Parrinello, P. Hunt, S. G. Deeks, and H. N. Hodis, “T Cell Activation Predicts Carotid Artery Stiffness among HIV-infected Women,” Atherosclerosis, Vol. 217, pp. 207-213, 2011.
[56] F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa, “Mechanical Behavior of Coronary Stents Investigated through the Finite Element Method,” Journal of Biomechanics, Vol. 35, pp.803-811, 2002.
[57] S. N. D. Chua, B. J. MacDonald, and M. S. J. Hashmi, “Effect of Varying Slotted Tube (Stent) Geometry on Its Expansion Behavior using Finite Element Method,” Journal of Materials Processing Technology, Vol. 155-156, pp. 1764-1771, 2004.
[58] F. Migliavacca, L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini, “A Predictive Study of the Mechanical Behavior of Coronary Stents by Computer Modeling,” Medical Engineering & Physics, Vol. 27, pp.13-18, 2005.
[59] W. Q. Wang, D. K. Liang, D. Z. Yang, and M. Qi, “Analysis of the Transient Expansion Behavior and Design Optimization of Coronary Stents by Finite Element Method,” Journal of Biomechanics, Vol. 39, pp. 21-32, 2006.
[60] L. Gu, S. Santra, R. A. Mericle, and A. V. Kumar, ”Finite Element Analysis of Covered Microstents,” Journal of Biomechanics, Vol. 38, pp. 1221–1227, 2005.
[61] W. Wu, M. Qi, X. P. Liu, D. Z. Yang, and W. Q. Wang, “Delivery and Release of Nitinol Stent in Carotid Artery and Their Interactions: A Finite Element Analysis,” Journal of Biomechanics, Vol. 40, pp. 3034–3040, 2007.
[62] S. Miyamoto, T. Hadama, H. Anai, H. Sako, O. Shigemitsu, E. Iwata, and H. Hmamoto, “Successful Open Stent Grafting of a Right Aortic Arch and a Descending Aortic Aneurysm Originating from a Kommerell’s Diverticulum: Report of a Case,” Surgery Today, Vol. 32, pp. 359–361, 2002.
[63] Z. Li and C. Kleinstreuer, “Computational Analysis of Type II Endoleaks in a Stented Abdominal Aortic Aneurysm Model,” Journal of Biomechanics, Vol. 39, pp.2573–2582, 2006.
[64] S. K. Lam, G. S. K. Fung, S. W. K. Cheng, and K. W. Chow, “A Computational Investigation on the Effect of Biomechanical Factors Related to Stent-graft Models in the Thoracic Aorta,” In proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 943-946, 2007.
[65] J. H. Kinney, M. Balooch, G. W. Marshall, and S. J. Marshall, “A Micromechanics Model of the Elastic Properties of Human Dentine,” Archives of Oral Biology, Vol. 44, pp. 813-822, 1999.
[66] E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, “The Hardness and Modulus of Elasticity of Primary Molar Teeth: an Ultra-micro-indentation Study,” Journal of Dentistry, Vol. 28, pp. 589-594, 2000.
[67] G. W. Marshall Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, “Mechanical Properties of the Dentinoenamel Junction: AFM Studies of Nanohardness, Elastic Modulus, and Fracture,” Journal of Biomedical Materials Research, Vol. 54, pp. 87-95, 2001.
[68] G. Balooch, G. W. Marshall, S. J. Marshall, O. L. Warren, S. A. S. Asif, and M. Balooch, “Evaluation of a New Modulus Mapping Technique to Investigate Microstructureal Fracture of Human Teeth,” Journal of Biomedical Materials Research, Vol. 54, pp. 87-95, 2001.
[69] S. J. Marshall, M. Balooch, S. Habalitz, G. Balooch, R. Gallagher, and G. W. Marshall, “The Dentin-enamel Junction - A Natual, Multilevel Interface,” Journal of the European Ceramic Society, Vol. 23, pp. 2897-2904, 2003.
[70] L. Angker, M. V. Swain, and N. Kilpatrick, “Micro-mechanical Characterisation of the Properties of Primary Teeth Dentine,” Journal of Dentistry, Vol. 31, pp. 261-267, 2003.
[71] L. Angker, C. Nockolds, M. V. Swain, and N. Kilpatrick, “Correlating the Mechanical Properties to the Mineral Content of carious Dentine - A Comparative Study using an Ultra-micro Indentation System (UMIS) an SEM-BSE Signals,” Archives of Oral Biology, Vol. 49, pp. 369-378, 2004.
[72] L. Angker, M. V. Swain, and N. Kilpatrick, “Characterising the Micro-mechanical Behaviour of the Carious Dentine of Primary Teeth using Nano-indentation,” Journal of Biomechanics, Vol. 38, pp. 1535-1542, 2005.
[73] Y. Hosoya and G. W. Marshall, “The Nano-hardness and Elastic Modulus of Sound Deciduous Canine Dentin and Young Premolar Dentin-preliminary Study,” Journal of Materials Science: Materials in Medicine, Vol. 16, pp. 1-8, 2005.
[74] Y. Hosoya and F. R. Tay, “Hardness, Elasticity, and Ultrastructure of Bonded Sound and Caries-affected Primary Tooth Dentin,” Journal of Biomedical Materials Research Part B, Applied Biomaterials, Vol. 81B, pp. 135-141, 2007.
[75] A. Braly, L. A. Darnell, A. B. Mann, M. F. Teaford, and T. P. Weihs, “The Effect of Prism Orientation on the Indentation Testing of Human Molar Enamel,” Archives of Oral Biology, Vol. 52, pp. 856-860, 2007.
[76] S. F. Ang, T. Scholz, A. Klocke, and G. A. Schneider, “Determination of the Elastic/Plastic Transition of Human Enamel by Nonoinentation,” Dental Materials, Vol. 25, pp. 1403-1410, 2009.
[77] D. S. Brauer, J. F. Hilton, G. W. Marshall, and S. J. Marshall, “Nano- and Micromechanical Properties of Dentine: Investigation of Differences with Tooth Side,” Journal of Biomechanics, Vol. 44, pp. 1626-1629, 2011.
[78] L. Zheng, J. Zheng, L. Q. Weng, L. M. Qian, and Z. R. Zhou, “Effect of Remineralization on the Nanomechanical Properties and Microtribological Behaviour of Acid-eroded Human Tooth Enamel,” Wear, Vol. 271, pp. 2297-2304, 2011.
[79] S. Sauro, R. Osorio, T. F. Watson, and M. Toledano, “Assessment of the Quality of Resin-dentin Bonded Interfaces: An AFM Nano-indentaiotn, μTBS and Confocal Ultramorphology Study,” Dental Materials, Vol. 28, pp. 622-631, 2012.
[80] L. H. He and M. V. Swain, “Nanoindentation Derived Stress-strain Properties of Dental Materials,” Dental Materials, Vol. 23, pp. 814-821, 2007.
[81] H. Pelletier, D. Muller, P. Mille, and J. J. Grob, “Structural and Mechanical Characterisation of Boron and Nitrogen Implanted NiTi Shape Memory Alloy,” Surface & Coatings Technology, Vol. 158-159, pp. 309-317, 2002.
[82] D. Low, T. Sumii, M. V. Swain, K. Ishigami, and T. Takeda, “Instrumented Indentation Characterisation pf Mouth-guard Materials,” Dental Materials, Vol. 18, pp. 211-215, 2002.
[83] X. D. Dong and B. W. Darvell, “Stress Distribution and Failure Mode of Dental Ceramic Structures under Hertzian Indentation,” Dental Materials, Vol. 19, pp. 542-551, 2003.
[84] S. M. Chung and A. U. J. Yap, “Effects of Surface Finish on Indentation Modulus and Hardness of Dental Composite Restoratives,” Dental Materials, Vol. 21, pp. 1008-1016, 2005.
[85] Y. Sun, A. Bloyce, and T. Bell, “Finite Element Analysis of Plastic Deformation of Various TiN Coating/Substrate Systems under Normal Contact with a Rigid Sphere,” Thin Solid Films, Vol. 271, pp. 122-131, 1995.
[86] N. Schwarzer, M. Wittling, M. Swain, and F. Richter, “The Analytical Solution of the Contact Problem of Spherical Indenters on Layered Materials: Application for the Investigation of TiN Films on Silicon,” Thin Solid Films, Vol. 270, pp. 371-375, 1995.
[87] J. A. Knapp, D. M. Follstaedt, S. M. Myers, J. C. Barbour, T. A. Friedmann, J. W. Ager III, O. R. Monteiro, and I. G. Brown, “Finite-element Modeling of Nanoindentation for Evaluating Mechanical Properties of MEMS Materials,” Surface & Coatings Technology, Vol. 103-104, pp. 268-275, 1998.
[88] D. Ma, K. Xu, and J. He, “Numerical Simulation for Determining the Mechanical Properties of Thin Metal Films using Depth-sensing Indentation Technique,” Thin Solid Films, Vol. 323, pp. 183-187, 1998.
[89] T. Chudoba, N. Schwarzera, and F. Richter, “Determination of Elastic Properties of Thin Films by Indentation Measurements with a Spherical Indenter,” Surface & Coatings Technology, Vol. 127, pp. 9-17, 2000.
[90] T. Chudoba, N. Schwarzera, F. Richter, and U. Beck, “Determination of Mechanical Film Properties of a Bilayer System due to Elastic Indentation Measurements with a Spherical,” Thin Solid Films, Vol. 377, pp. 366-372, 2000.
[91] J. Thurn and R. F. Cook, “Simplified Area Function for Sharp Indenter Tips in Depth-sensing Indentation,” Journal of Materials Research, Vol. 17, pp. 1143-1146, 2002.
[92] S. Chen, L. Liu, and T. Wang, “Investigation of the Mechanical Properties of Thin Films by Nanoindentation, Considering the Effects of Thickness and Different Coating-substrate Combinations,” Surface & Coatings Technology, Vol. 191, pp. 25-32, 2005.
[93] M. Dao, N. Chollacoop, K. J. van Vliet, T. A. Venkatesh, and S. Suresh, “Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation,” Acta Materialia, Vol. 49, pp. 3899-3918, 2001.
[94] J. H. Lee, D. Lim, H. Hyun, and H. Lee, “A Numerical Approach to Indentation Technique to Evaluate Material Properties of Film-on-substrate Systems,” International Journal of Solids and Structures, Vol. 49, pp. 1033-1043, 2012.
[95] S. Sakai, H. Tanimoto, and H. Mizibayashi, “Mechanical Behavior of High-density Nanocrystalline Gold Prepared by Gas Deposition Method,” Acta Materialia, Vol. 47, pp. 211-217, 1999.
[96] R. S. Jones, J. A. Slotwinski, and J. W. Mintmire, “Structural and Elastic Properties of Transition-metal Superlattices,” Physical Review B, Vol. 45, pp. 13624-13630, 1992.
[97] H. Huang and F. Spaepen, “Tensile Testing of Free-standing Cu, Ag and Al Thin Films and Ag/Cu Multilayers,” Acta Materialia, Vol. 48, pp. 3261-3269, 2000.
[98] G. A. Holzapfel, Nonlinear Solid Mechanics, John Wiley & Sons, West Sussex, England, 2000.
[99] 林志生,豬:心臟血管疾病研究的理想實驗動物模式,科學發展月刊,第29卷第2期,第91-96頁,2001年。
[100] A. O. Medynsky, D. W. Holdsworth, M. H. Sherbrin, R. N. Rankin, and M. R. Roach, “The Effect of Storage Time and Repeated Measurements on the Elastic Properties of Isolated Porcine Aortas using High Resolution X-ray CT,” Canadian Journal of Physiology and Pharmacology, Vol. 76, pp.451-456, 1998.
[101] Y. B. Fu and R. W. Ogden, Nonlinear Elasticity: Theory and Applications, Cambridge University Press, Cambridge, UK, 2001.
[102] 周德程,解剖生理學,修訂新版第一版,昭人出版社,台中,中華民國,1985年。
[103] 陳勇諭,血管支架之塑性變形與應力分析,國立中山大學機械與機電工程系碩士論文,高雄市,中華民國,2006年。
[104] C. Rogers, D. Y. Tseng, J. C. Squire, and E. R. Edelman, “Balloon-artery Interactions during Stent Placement,” Circulation Research, Vol. 84, pp. 378-383, 1999.
[105] “Instruction for Use, Cordis AQUA-T3,” Johnson & Johnson Company, USA, Feb. 2003.
[106] A. C. Fischer-Cripps, Nanoindentation, Springer-Verlag, New York, USA, 2002.
[107] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, USA, 1970.
[108] W. C. Oliver and G. M. Pharr, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advanced in Understanding and Refinements of Methodology,” Journal of Materials Research, Vol. 19, pp. 3-20, 2004.
[109] D. J. Haines, “Physical Properties of Human Tooth Enamel and Enamel Sheath Material under Load,” Journal of Boimechanics, Vol. 1, pp. 119-125, 1968.
[110] J. H. Kinney, J. R. Gladden, G. W. Marshall, S. J. Marshall, J. H. So, and J. D. Maynard, “Resonant Ultrasound Spectroscopy Measurements of the Elastic Constants of Human Dentin,” Journal of Boimechanics, Vol. 37, pp. 437-441, 2004.
[111] E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, “The Hardness and Modulus of Elasticity of Primary Molar Teeth: an Ultra-micro-indentation Study,” Journal of Dentistry, Vol. 28, pp. 589-594, 2000.
[112] G. W. Marshall, M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, “Mechanical Properties of the Dentinoenamel Junction: AFM Studies of Nanohardness, Elastic Modulus, and Fracture,” Journal of Biomedical Materials Research, Vol. 54, pp.87-95, 2001.
[113] G. Balooch, G. W. Marshall, S. J. Marshall, O. L. Warren, S. A. S. Asif, and M. Balooch, “Evaluation of a New Modulus Mapping Technique to Investigate Microstructural Features of Human Teeth,” Journal of Biomechanics, Vol. 37, pp. 1223-1232, 2004.
[114] Y. Hosoya and G. W. Marshall, “The Nano-hardness and Elastic Modulus of Sound Deciduous Canine Dentin and Young Premolar Dentin-preliminary Study,” Journal of Materials Science, Materials in Medicine, Vol. 16, pp. 1-8, 2005.
[115] Y. Hosoya and F. R. Tay, “Hardness, Elasticity, and Ultrastructure of Bonded Sound and Caries-affected Primary Tooth Dentin,” Journal of Biomedical Materials Research Part B, Applied Biomaterials, Vol. 81B, pp. 135-141, 2007.
[116] L. H. He and M. V. Swain, “Influence of Environment on the Mechanical Behaviour of Mature Human Enamel,” Biomaterials, Vol. 28, pp. 4512-4520, 2007.
[117] Z. Shan and S. K. Sitaraman, “Elastic-plastic Characterization of Thin Films using Nanoindentation Technique,” Thin Solid Films, Vol. 437, pp. 176-181, 2003.
[118] K. H. J. Buschow, R. T. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, and S. Mahajan, Encyclopedia of materials: science and technology, Vol. 10, Elsevier, New York, USA, 2001.
[119] P. Y. Papalambros and D. J. Wilde, Principles of optimal design modeling and computation, Cambridge University Press, Cambridge, UK, 2003.
[120] W. C. O’Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology, Noyes Publications, New Jersey, USA, 1990.
[121] D. C. Hurley, V. K. Tewary, and A. J. Richards, “Thin-film Elastic-property Measurements with Laser-ultrasonic SAW Spectrometry,” Thin Solid Films, Vol. 398-399, pp. 326-330, 2001.
[122] W. Pang, A. G. Every, J. D. Comins, P. R. Stoddart, and X. Zhang, “Brillouin Scattering from Acoustic Excitations in TiN Films on High Speed Steel - A Stiffening System,” Journal of Applied Physics, Vol. 86, pp. 311-317, 1999.
[123] A. Karimi, O. R. Shojaei, T. Kruml, and J. L. Martin, “Characterization of TiN Thin Films using the Bulge Test and the Nanoindentation Technique,” Thin Solid Films, Vo. 308-309, pp. 334-339, 1997.
[124] O. R. Shojaei and A. Karimi, “Comparison of Mechanical Properties of TiN Thin Films using Nanoindentation and Bulge Test,” Thin Solid Films, Vol. 332, pp. 202-208, 1998.
[125] A. Rouzaud, E. Barbier, J. Ernoult, and E. Quesnel, “A Method for Elastic Modulus Measurements of Magnetron Sputtered Thin Films Dedicated to Mechanical Applications,” Thin Solid Films, Vol. 270, pp. 270-274, 1995.
[126] P. Patsalas, C. Charitidis, and S. Logothetidis, “The Effect of Substrate Temperature and Biasing on the Mechanical Properties and Structure of Sputtered Titanium Nitride Thin Films,” Surface & Coatings Technology, Vol. 125, pp. 335-340, 2000.
[127] H. S. Kim and M. B. Bush, “The Effects of Grain Size and Porosity on the Elastic Modulus of Nanocrystalline Materials,” Nanostructured Materials Vol. 11, pp. 361-367, 1999.
[128] M. Leonahrdt, D. Schneider, J. Kaspar, and S. Schenk, “Characterizing the Porosity on Thin Titanium Films by Laser-acoustics,” Surface & Coatings Technology, Vol. 185, pp. 292-302, 2004.
[129] P. G. Sanders, A. B. Witney, J. R. Weertman, R. Z. Valiev, and R. W. Siegel, “Residual Stress, Strain and Faults in Nanocrystalline Palladium and Copper,” Materials Science and Engineering: A, Vol. 204, pp. 7-11, 1995.
[130] M. D. Kluge, D. Wolf, J. F. Lutsko, and S. R. Phillpot, “Formalism for the Calculation of Local Elastic Constants at Grain Boundaries by Means of Atomistic Simulation,” Journal of Applied Physics, Vol. 67, pp. 2370-2379, 1990.
[131] T. Xu and L. Zheng, “The Elastic Modulus in the Grain-boundary Region of Polycrystalline Materials,” Philosophical Magazine Letters, Vol. 84, pp. 225-233, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code