Responsive image
博碩士論文 etd-0829115-103938 詳細資訊
Title page for etd-0829115-103938
論文名稱
Title
寬頻及高解析度摻鈰/摻鉻晶體光纖應用於光學同調斷層顯微光源之研製及特性研究
The Fabrication and Characterization Study of Broadband and High Resolution of Ce/Cr-Doped Crystal Fiber for Optical Coherence Tomography Light Sources
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-09-19
繳交日期
Date of Submission
2015-09-29
關鍵字
Keywords
摻鈰/摻鉻晶體光纖、光纖設計與製程、光學同調斷層顯微系統、生物醫學影像
Biomedical optical imaging, Fiber design and fabrication, Optical coherence tomography, Ce/Cr-doped fiber
統計
Statistics
本論文已被瀏覽 5726 次,被下載 43
The thesis/dissertation has been browsed 5726 times, has been downloaded 43 times.
中文摘要
本研究提出光纖抽絲塔技術研製寬頻及高解析度摻鈰/摻鉻晶體光纖應用於光學同調斷層顯微光源,利用管中棒與管中粉分段式製程以摻鈰釔鋁石榴石或摻鈰粉末和石英管抽出分別的摻鈰光纖,其螢光範圍分別為480至950 nm,研製成果具有最高79.1 nW/nm的螢光功率。使用管中粉分段式製程以摻鉻粉末和石英管抽出分別的摻鉻光纖,其螢光範圍為950至1300 nm,研究成果具有27.3 nW/nm的螢光功率,主要為Cr4+離子激發近高斯自發性輻射頻譜。研製摻鈰/鉻光纖光源,應用於光學同調斷層顯微(OCT)系統,分別量測得到縱向解析度為2.3、1.8、1.9和3 µm,因此抽絲塔製程所製作出來的寬頻光源的確具有微米等級的縱向解析度,適合架設在光學低同調斷層掃描系統上。光纖式的OCT系統也具有輕盈、小尺寸、組裝方便和容易與其它測量系統之優點,以提供高對比度和高品質成像應用。本寬頻摻鈰與摻鉻光纖研究,研製出具有自發輻射螢光的摻鈰光纖與摻鉻光纖,具有低旁瓣訊號與邊陲雜訊,因此能得到高品質的影像,這樣的晶體光纖為光源之光纖式OCT系統,同時應用在工業檢測以及生醫影像擁有良好的潛力與產業利用性。寬頻摻鈰與摻鉻光纖光源有許多臨床應用領域,如眼科、皮膚科、牙科、心臟和胃腸道病變等。
Abstract
We report the fabrication and characteristics of Ce-doped fibers (CeDFs) and Cr-doped fibers (CDFs) based on drawing tower technique. The CeDFs show an emission from 480 to 650 nm, 600 to 800 nm, and 700 to 950 nm with a power density of 21.1 nW/nm, 79.1 nW/nm and 63.8 nW/nm, respectively. The CDFs exhibit an emission from 975 to 1300 nm with a power density of 27.3 nW/nm which was dominated by Cr4+ near-Gaussian ASE spectrum. For fiber-based OCT system, the measured broadband emission of CeDFs and CDFs showed four different high axial resolutions of 2.3, 1.8, 1.9, and 3-µm in air. Furthermore, fiber-based OCT system with the broadband fluorescence sources spanning the visible and near infrared regions provides the deepest penetration in biomedical specimens. A number of clinical applications have been demonstrated in a widely diverse range of areas such as ophthalmology, dermatology, dentistry, cardiology, and gastrointestinal pathologies. Fiber-based OCT system is featured with lightweight, mini size, easy assembly and can be integrated with other measurement systems to provide high-contrast and high quality imaging applications. In this study, the initial success in the development of the CeDFs and CDFs indicates that the fabricated fibers may be widely applicable as a new generation broadband source for the use in various spectroscopic OCT applications. Therefore, the proposed broadband and high axial resolution light source has a great potential for future OCT source applications, such as biological research and industrial inspection.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
中文摘要 iv
英文摘要 v
內容目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 簡介 1
1.2 研究動機 3
1.3 研究目標及章節介紹 5
1.4 參考文獻 6

第二章 光學同調斷層顯微系統理論基礎與晶體相關理論和特性 9
2.1 光學同調斷層顯微系統理論介紹 9
2.2 螢光材料之簡介 14
2.2.1 螢光材料之分類、原理、應用 15
2.2.2 稀土離子之輻射特性 18
2.3 螢光材料之摻鈰釔鋁石榴石之特性 19
2.4 螢光材料之摻鈰粉末選擇與合成方式及其特性 22
2.4.1 螢光材料摻鈰粉末之設計原理與製備方式 24
2.4.2 鎂矽酸鹽類摻鈰粉末之特性 29
2.5 參考文獻 30

第三章 光纖抽絲塔製程 32
3.1 商用抽絲塔與石英玻璃材料介紹 32
3.2 預型體設計與製作 33
3.3 管中棒抽絲塔製程 36
3.4 摻鈰/鉻粉末與管中粉分段式抽絲製程 44
3.4.1 摻鈰/鉻粉末製程 44
3.4.2 管中粉分段式抽絲塔製程 46
3.5 參考文獻 50

第四章 摻鈰/鉻粉末與光纖之特性量測與分析 51
4.1 摻鈰/鉻粉末之量測與分析 51
4.1.1 摻鈰/鉻粉末最佳化製程參數分析 51
4.1.2 光致發光量測與分析 53
4.1.3 X光繞射儀量測與分析 55
4.2 摻鈰/鉻光纖之光學特性量測與分析 57
4.2.1 光纖折射率量測與分析 57
4.2.2 光纖傳輸損耗量測與分析 59
4.2.3 光纖螢光頻譜量測與分析 61
4.3 摻鈰光纖之微結構量測與分析 65
4.3.1 穿透式電子顯微鏡量測與分析 65
4.3.2 電子微探儀量測與分析 66
4.4 參考文獻 69

第五章 光纖式光學同調斷層掃描顯微系統 70
5.1 系統架構 70
5.1.1 晶體光纖之光源 70
5.1.2 光纖式時域光學同調斷層掃描顯微系統架設 71
5.2 信號處理 74
5.3 樣品量測與分析 77
5.4 參考文獻 79

第六章 結論與討論 80
6.1 結論與討論 80
6.2 參考文獻 82

作者著作
作者簡介
參考文獻 References
1.4 參考文獻
[1] Cassidy. P, and G. Radda, “Molecular imaging perspectives.” Journal of the Royal Society Interface, 2(3), p. 133, 2005.
[2] Pomper, M., A. Gharib, A. Replication, T. Transcription, B. Initiation, C. Elongation, R. Transcription, D. Replication, T. Elongation and V. Ponomarev, "Molecular imaging" Acad. Radiol, 8, p. 1141. 2001.
[3] M. Brezinski, G. Tearney, B. Bouma,J. Izatt, M. Hee, et al.,“Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation, vol. 93, p. 1206, 1996.
[4] J. Fujimoto, M. Brezinski, G. Tearney, S. Boppart, B. Bouma, et al.,“Optical biopsy and imaging using optical coherence tomography,” Nat. Med., vol. 1, pp.970-972, 1995.
[5] A. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,”Opt. Lett., vol. 13, pp. 186-188, 1988.
[6] A. Fercher, E. Roth, and G. Muller, “Ophthalmic laser interferometry,”SPIE MILESTONE SERIES MS, vol. 165, pp. 242-245, 2001.
[7] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, et al.,”Optical coherence tomography,” Science vol. 254, pp. 1178-1181, 1991.
[8] A. Fercher, C. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,”Am. J. Ophthalmol., vol. 116, pp.113-114, 1993.
[9] J. G. Fujimoto,C. Pitris , S. A. Boppart , M. E. Brezinski , "Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy., " Neoplasia 2(1):1-17, (2000).
[10] R. Paul , Y. C. Herz , D. Aguirre, J. G. Fujimoto , "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography , "Optics Express , Vol. 12, Issue 15, Page 3532-3542, (2004).
[11] G. J. Tearney , M. E. Brezinsky , S. A. Bopart ,et al., "Images in cardiovascular medicine: catheter based optical imagingof a human coronary artery," Circulation 94, Page 3013, (1996).
[12] M. E. Brezinski , G. J. Tearney , B. E. Bouma , S. A. Boppart, M. R. Hee , E. A. Swanson , J. F. Southern and J. G. Fujimoto , "Imaging of coronary artery microstructure (in vitro) with optical coherence tomography ," Am. J. Cardiol. 77 92–93 (1996).
[13] S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka , "Optical coherence tomography in the gastrointestinal tract," Endoscopy 32, 796-803 (2000).
[14] R. Jadwiga , M. Clifford , M. E. Brezinski , "Cartilage thickness measurements from optical coherence tomography ," JOSA A, Volume 20, Issue 2, Page 357-367, 2003.
[15] Y. Ikuno, K. Sayanagi, T. Oshima, F. Gomi, S. Kusaka, M. Kamei, M. Ohji, T. Fujikado, Y. Tono , "Optical coherence tomographic findings of macular holes and retinal detachment after vitrectomy in highly myopic eyes," Am J Ophthalmol.,136(3): Page 477-481, 2003.
[16] E. Seanson, J. Izatt, M. Hee, D. Huang, C. Lin, et al.,“In vivo retinal imaging by optical coherence tomography,” Opt. Lett., vol. 18, pp. 1864-1866, 1993.
[17] W. Drexler, U. Morgner, F. Kartner, C. Pitris, S. Boppart, et al., "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett., vol. 24, pp. 1221-1223, 1999.
[18] W. Drexler, H. Sattmann, B. Hermann, T. Ko, M. Stur, et al., "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Arch. Ophthalmol, vol. 121, p. 695, 2003.
[19] I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, et al., "Ultrahigh-resolution optical coherence tomography using continuum generation in an air¡Vsilica microstructure optical fiber," Opt. Lett., vol. 26, pp. 608-610, 2001.
[20] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser,“Optical coherence Tomography-principles and applications,” Rep. Prog. Phys., vol. 66, p. 239, 2003.
[21] A.M. Smith, M.C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nature Nanotechnology, Vol. 4(11), pp. 710-711, 2009.
[22] K. Y. Huang, K. Y. Hsu,D. Y. Jheng, W. J. Zhuo, P. Y. Chen, et al.,“Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express, vol. 16, pp. 12264-12271, 2008.
[23] C. C. Tsai, T. H. Chen, Y. S. Lin, et al.“Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Optics Lett., vol. 35, No. 6, 2010.
[24] Y.C. Huang, J.S. Wang, Y.S. Lin, T.C. Lin, W.L. Wang, Y.K. Lu, S.M. Yeh, H.H. Kuo, S.L. Huang, and W.H. Cheng, “Development of Broadband Single-mode Cr-Doped Silica Fibers,” IEEE Photon. Technol. Lett., Vol. 22, No. 12, pp. 914-916, June 15, 2010.
[25] Y.C. Huang, C.N. Liu, Y.S. Lin, J.S. Wang, W.L. Wang, F.Y. Lo, T.L. Chou, S.L. Huang, and W.H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Exp., Vol. 21, pp. 4790-4795, 2013.
2.5 參考文獻
[1] A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat,“Measyrement of intraocular disrances by backscattering spectral interferometry,”Opt. Commun., vol. 117, pp. 43-48, 1995.
[2] N. Nassif, B. Cense, B. Hyle Park, S. Yun, T. Chen, et al.,“In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett., Lett., vol. 29, pp. 480-482, 2004.
[3] M. Wojtkowski, R.Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt., vol. 7, p. 457, 2002.
[4] Phosphor Research Society, Phosphor Handbook, CRC Press, New York, 1999.
[5] G. Blasse and B.C. Grabmaier, Luminescence Materials, Springer-Verlag, New York, 1994.
[6] H. P. Kallmann and G. M. Spruch, Luminescence of Organic and 83 Inorganic Materials, John Wiley and Sons, Inc., New York, 1962.
[7] A. Beiser, Concepts of Modern Physics, McGraw-Hill Companies, Inc.,International Edition, 2003.
[8] 柯以侃, 儀器分析, 文京圖書, 1996.
[9] H. Yamamoto, “Physical Chemistry” 6th ed., Oxford University Press, Tokyo, 1998.
[10] R. C. Ropp, Luminescence and the Solid State, Elsevier, Amsterdam, 291, 1991.
[11] M. Duran, Y. Yamaguchi, R. B. Remington, Y. Osamura and H. F. Schaefer III, “Analytic energy third derivatives for paired-excited multiconfiguration self-consistent-field wave functions”, 90 (1), 334-345, 1989.
[12] 黃朝紅,”大尺寸無機閃爍晶體Ce3+:YAG的生長和光譜研究,”Journal of synthetic crystals, Vol. 30, No. 4, 2001.
[13] 林晏聖,“以側鍍方法提升四價摻鉻晶體光纖螢光強度之研究,” 碩士畢業論文, 國立中山大學, 2005.
[14] 劉浚年,“管中粉製程之單模摻鉻光纖製程與特性”, 國立中山大學光電工程學系碩士論文, 2012.
[15] C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, “Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes,” IEEE J. Displ. Technol. 9(6), pp. 427–432, 2013.
[16] 劉俊顯,“同色度玻璃螢光體與矽膠色轉換層之可靠度試驗暨平均壽命預測,”國立中山大學, 2011.
[17] 黃光瑤, “摻鉻釔鋁石榴石晶體光纖之超寬頻自發輻射放大光源之研製,” 碩士畢業論文, 國立中山大學, 2003.
[18] C. Webb, and J. Jones, "Handbook of laser technology and applications." 2004.
[19] S. Chhajed, Y. Xi, Y. Li, T. Gessmann, and E. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,”J. Appl. Phys., Vol. 97, pp. 054506, 2005.
[20] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang, “Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,” J. Crystal Growth, Vol. 274, pp. 522-529, 2005.
[21] D. van der Voort, I. de Maatgersdorf and G. Blasse, “Luminescence of Rare-Earth Ions in Mg2SiO4.” Eur. J. Solid State Inorg. Chem., Vol 29(9), pp. 1029-1039, 1992.
[22] W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A Systematic Analysis of the Spectra of the Lanthanides Doped into Single Crystal LaF3,” J. Chem. Phys., Vol. 90(9), pp. 3443-3457, 1989.
[23] J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “ On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys., 105, 053110, 2009.
[24] A. Patra, G. A. Baker, S. N. Baker, Opt. Mater. 27, pp. 15-20, 2004.
[25] 研發手札: 溶膠凝膠 (sol-gel)
http://pike.pidc.org.tw/ike/doclib/2003/2003doclib/2003ike03-0/2003ike03-0-71.asp
[26] J. A. DeLuca, J. Chem. Educ. 57, 8, 541, 1980.
[27] 石景仁, ”白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析”, 台灣大學化學研究所碩士論文, 2001.
[28] W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A Systematic Analysis of the Spectra of the Lanthanides Doped into Single Crystal LaF3,” J. Chem. Phys., Vol. 90(9), pp. 3443-3457, 1989.

3.5 參考文獻
[1] OFC 20操作手冊
[2] GE Quartz, Inc. www.ge.com/quartz.
[3] Ce:YAG crystal rod, DJ-LASER Inc., China, 2010.
[4] 黃翊中, “抽絲塔研製超寬頻摻鉻光纖之製程與特性,” 博士畢業論文, 國立中山大學, 2008.
4.4 參考文獻
[1] C. J Brinker, G. W. Scherrer, “Sol-Gel Science. The Physsics and Chemistry of Sol-Gel Processing”, Academic Press, New York, 1990.
[2] B. Ammundsen, G. R. Burns, S. E. Friberg,” A study of the formation of silica-supported mixed magnesium-manganese spinel oxides from multicomponent gels”, Journal of Sol-gel Science and Technology, 4 (1), 23-29, 1995.
[3] Brinker, C. J. “Sol-Gel Science” Scherer, G. W. , Academic Press, San Diego, 1990.
[4] T. W. Zerda, M. Bradley and J. Jonas, Journal of Material Letter, 3, 124, 1985.
[5] X. Fan, M. Wang, Y. Yu, and Q. Wu, “Crystallization Process of MgSiO3Gel and Influence of Crystallization on Luminescence of Eu3+ Ions,”Journal of Physics and Chemistry of Solids, 57, 1259-1262, 1996.
[6] X. Fan, M. Wang, and Z. Wang, “Spectroscopic Studies of Rare Earth Ions in MgSiO3 Gel-Derived Crystals,” Materials Science and Engineering: B, 47, 252-256, 1997.
[7] W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A Systematic Analysis of the Spectra of the Lanthanides Doped into Single Crystal LaF3,” J. Chem. Phys., Vol. 90(9), pp. 3443-3457, 1989.
[8] D. van der Voort, I. de Maatgersdorf and G. Blasse, “Luminescence of Rare-Earth Ions in Mg2SiO4.” Eur. J. Solid State Inorg. Chem., Vol 29(9), pp. 1029-1039, 1992.
[9] 劉文貴,“超寬頻摻鉻光纖製程與特性之研究, ”碩士畢業論文, 國立中山大學, 2007.
[10] C.A. Murray, and D.H. Van Winkle, “Experimental Observation of Two-Stage Melting in a Classical Two-Dimensional Screened Coulomb System,” Phys. Reeu. Letts., Vol 58, pp. 1200-1203, 1987.
5.4 參考文獻
[1] D.G. Lampard, “Generalization of the Wiener-Khintchine Theorem to Nonstationary Processes,” J. Appl. Phys., Vol 25, pp. 802-803, 1954.
[2] G. Vasilescu, “Electronic noise and interfering signals,” Springer-Verlag, 2005.
[3] A. Ziel, “Noise: sources, characterization, measurements,” Prentice-Hall, 1970.
[4] A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett., 24, 1484, 1999.
[5] M. Gupta, “Thermal noise in nonlinear resistive devices and its circuit representation,” Proc. IEEE, 70, 788, 1982.
[6] M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instrum., 69, 3755, 1998.
[7] B. Bouma and G. Tearney, “Handbook of optical coherence tomography,” Marcel Dekker, 2002.
[8] A.C. Akcay, J.P. Rolland, and J.M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography.” Opt. Lett., Vol 28, No. 20, pp. 1921-1923, 2003.
6.2 參考文獻
[1] J.G. Fujimoto, C. Pitris, S.A. Boppart, and M.E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy1,” Neoplasia, Vol. 2(1-2), pp. 9-25, 2000.
[2] M. Boone, S. Norrenberg, G. Jemec, and V.D. Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch Dermatol Res., Vol. 305, pp. 283-297, 2013.
[3] H.G. Bczerra, M.A. Costa, G. Guagliumi, A.M. Rollins, D.I. Simon, “Intracoronary Optical Coherence Tomography: A Comprehensive Review,” JACC Cardiovasc Interv., Vol. 2(11), pp. 1035-1046, 2009.
[4] Y.S. Hsieh, Y.C. Ho, S.Y. Lee, C.C. Chuang, J.C. Tsai, K.F. Lin, and C.W. Sun, “Dental Optical Coherence Tomography,” Sensors, Vol. 13, pp. 8928-8949, 2013.
[5] S. Bourquin, P.Seitz, and R.P. Salathe, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett., Vol 26(8), pp. 512-514, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code