Responsive image
博碩士論文 etd-0830100-095736 詳細資訊
Title page for etd-0830100-095736
論文名稱
Title
水中吸音材料於不同水深之特性探討
The Characteristics of Acoustic Absorptive Material at Various Water Depth
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-07-26
繳交日期
Date of Submission
2000-08-30
關鍵字
Keywords
插入損失、聲能級、聲阻抗、回響減量、吸音、脈衝波
insertion loss, acoustic absorption, echo reduction, source level, pulse sound, acoustic impedance
統計
Statistics
本論文已被瀏覽 5805 次,被下載 1869
The thesis/dissertation has been browsed 5805 times, has been downloaded 1869 times.
中文摘要
一般在海洋環境中利用聲波以為探測工具,其運用原理為:將一聲源藉由換能器(可同時為訊號發射器及接收器),將聲能注入海洋水體中,繼而經由聲波在海水中之傳播將聲能傳達目標物,由於目標物本身對聲波的反射與散射現象,會將部份聲能經由反射路徑傳回換能器而為其所吸收,最後經由訊號處理方式達到目標辨識(identification) 的目地。聲納系統源自於軍事的需求,如果水下潛體欲避免敵方的聲納系統偵測出,乃試圖改變其反射波或穿透波之聲能與聲場,致使聲納系統所接受的訊號,不足以判讀或造成誤判,達到其隱蔽之目的。在水中聲學領域中,為達其隱蔽目的,乃應用吸音機制裝置於目標物表面上。一般而言,若欲將反射波與穿透波的聲能降低,常使用之方法有二:其一為主動式消音控制 ,旨在研究如何將入射聲波以破壞干涉之方式,令其聲波相位反置達到聲能降低之目的。另一則為被動式減音技術,乃藉吸音材料之吸音特性將聲能消耗於材料內部,降低反射聲能,令使其聲波不足以傳回偵測點。是故,應用此方法之吸音材料,其吸音係數需事先估算規劃之。雖言主動式消音控制之效果優於被動式減音技術,然而由於壓電複合材料之開發技術所限,主動式消音控制技術在水中吸音市場上並不多見。再者,其在安裝及維護成本上,所費不貲,且困難度皆高於被動式減音技術。鑑於此,本論文乃針對被動式減音技術之吸音材料特性為研究對象。

根據德國科學家Alberich對水中吸音材料被覆層之設計經驗中,發現吸音特性會隨水中壓力與溫度變化,而產生吸音特性之變化。基此動機,本論文旨在研究水中吸音材料於各種水深中,亦即不同壓力作用下,其吸音特性之變化情形。在實驗過程中,需建構一套量測系統及尋求量測標準,以為量測實驗方法之依據。並探討量測參數之設定,以求實驗結果之精確。本實驗之試片材質,經χ光繞射儀分析,判定為丁基橡膠與鋸木屑之合成物,編號為A1、A2、A3、A4、及A5共五片。在尚未進行水中加壓實驗之前,先行量測在空氣中之物理性質及吸音特性。結果為,此些試片其聲阻抗皆與水之聲阻抗匹配,而其在空氣中之聲學特性屬為隔音效果。

在水中實驗量測中,為減低反射、繞射及散射之影響,聲源採用脈衝波訊號,並以門檻系統(gating system)來擷取所需訊號。本實驗量測頻率11 kHz 至30 kHz之回聲衰減量(echo reduction)及插入損失量(insertion loss),以估算試片之聲學特性。實驗結果顯示,試片在水中未加壓(1 bar)時,其回聲衰減量約為10 dB,插入損失量約為15 dB;於加壓5 bar時, 其回聲衰減量約減少3 dB, 插入損失量約減少3 dB;在加壓10 bar時,其回聲衰減量約減少8 dB,插入損失量約減少5 dB。此現象印證水中吸音材料,在不同水壓作用下,會影響其聲學特性。
Abstract
In general the acoustic wave is used as a detecting tool in the ocean, its application placing a sound source into ocean, then the sound may impinge involves the target by wave propagation in the ocean. Due to the reflection and scattering effect of target, part of acoustic energy will be received by transducer through the path of reflection. The goal of target identification can be achieved by signal processing finally. If a submarine wish to avoid the detection by sonar system , it should attenuate the acoustic energy . Therefore the reflected signal can not be analyzed and distinguished by sonar system .The area of underwater acoustic attenuation has been researched for camouflaging submarine purpose for many years. There are two acoustic energy attenuation methods to reduce the reflective wave and transmitted wave. One is active attenuation control, which is to understand how the destructive interference of incident acoustic wave could be achieved for acoustic energy attenuation purposes. The other one is passive acoustic attenuation technique, which rely on the attenuation performance of underwater acoustic material to reduce the acoustic energy of incident wave. To be evaluated the acoustic absorption efficiency of material. Although the efficiency of active attenuation control is better compared with passive acoustic attenuation technique, the development of active attenuation control have not been highly pursued in the commercial market for underwater application, due to the limitations in piezo-composite technology. The cost of installation and maintenance is also higher in active control. This thesis studied the acoustic absorptive material based on passive acoustic attenuation technique . It could be attenuated the acoustic energy and spectrum of reflection and transmitted wave. Therefore, the signal can not be analyzed and distinguishing by sonar system.

According to Alberich acoustic absorption coating, their designs have the inherent problem of degradation under hydrostatic pressure and temperature. Thus, the objective of this thesis is to study the characteristics of the acoustic absorptive material at various water depth where the hydrostatic pressure are different. To measure the characteristics of acoustic material, an experimental system is setup, and the standard measuring method and criterion is also studied for future experimental reference. Furthermore, the different measurement parameters are discussed for accuracy of experimental results. There are five specimens tested in this experiment. The specimens are mainly made of neoprene and sawdust mixture and marked as A1、A2、A3、A4、and A5 respectively. The composites of these specimens are analyzed by x-ray diffraction meter. The physical properties and the acoustic absorption in airborne were measured before underwater hydrostatic pressure applied on these specimens. The physical properties show that the impedance of these specimens is very close to acoustic impedance of the water. Therefore, the specimen may be considered an acoustic isolator in the air.

To reduce the boundaries interference, such as reflection, diffraction and scattering signal. The pulse sound is used as sound source in this underwater experiment. Moreover, the gating system is applied to capture the proper signals for analysis. The echo reduction and insertion loss are measured in the 11 to 30 kHz frequency region for acoustic absorption evaluation in this experiment. The performance of experiment is found that specimen has the echo reduction about 10 dB and the insertion loss about 15 dB at 1 bar hydrostatic pressure. But when the hydrostatic pressure was increased to 5 bar, the echo reduction and insertion loss were both decreased by 3 dB. In addition, when the hydrostatic pressure was loaded at 10 bar, the echo reduction was decreased by 8 dB, and the insertion loss was decreased by 5 dB. It became evident that the efficiency of acoustic absorption is degraded under the higher hydrostatic pressure.
目次 Table of Contents
Chapter 1 INTRODUCTION
1.1 History of underwater acoustics 1
1.2 Development of active acoustic control 1
1.3 Evolution of acoustic absorptive material 3
1.4 Goals of research 7

Chapter 2 METHODOLOGY
2.1 Echo reduction 8
2.1.1 Pulse and gating method 12
2.1.2 Interference technique 13
2.2 Insertion loss 14

Chapter 3 EXPERIMENT
3.1 Acoustic material properties 16
3.1.1 Impedance comparison 17
3.2 Acoustic absorption in airborne 18
3.2.1 Methods for absorption coefficients
measurement 18
3.2.1.1. Reverberation room method 18
3.2.1.2 Standing wave method 20
3.2.1.3 Alternate method of acoustic
absorption 21
3.2.2 Results and summary 35
3.3 Underwater acoustic measurement setup and
procedure 38
3.3.1 High pressure water chamber 38
3.3.2 Measurement setup 38
3.3.3 Pulse sound 43
3.4 Experiment results 44
3.4.1 Source level 45
3.4.2 Echo reduction 46
3.4.3 Insertion loss 52

Chapter 4 CONCLUSIONS AND DISCUSSION
4.1 Conclusion 58
4.2 Discussions 59

BIBLIOGRAPHY

Appendix A
參考文獻 References
1. Knudsen, V.O., R.S. Alford, and J.W. Emling, “Underwater Ambient Noise,” J. Mar. Res., Vol.7, pp.410(1948).
2. Wenz, G.M., “Acoustic Ambient Noise in the Ocean: Spectra and Sources,” J. Acoustic. Soc. Am., Vol.34, pp.1936(1962).
3. Marsh, H.W., “Origin of the Knudsen Spectra,” J. Acoust. Soc. Am., Vol.35, pp.409(1963).
4. Urick, R.J., “Some Directional Properties of Deep Water Ambient Noise,” Naval Research Laboratory Report 3796,(1951).
5. Lieberman, L.N., ”Origin of Sound Absorption in Water and Sea Water,” J.Acoust. Soc. Am., Vol.20, pp.868(1948).
6. Lenord, R.W., P.C. Combs, and L.R. Skidmore, “Attenuation of Sound in Synthetic Sea Water,” J. Acoust. Soc. Am., Vol.21, pp.63(1949).
7. Urick, R.J., “Low Frequency Sound Attenuation in the Deep Ocean,” J. Acoust. Soc. Am., Vol.35, pp.1413(1963).
8. Thorp, W.H., “Deep Ocean Sound Attenuation in the Sub-and-Low-Kilocycle-Per-Second Region,” J. Acoust. Soc. Am., Vol.38, pp.648(1965).
9. Sheey, M.J., and R. Haley, “Measurement of Attenuation of the Low-Frequency Underwater Sound,” J. Acoust. Soc. Am., Vol.29, pp.464(1957).
10. J.W.S. Rayleigh, The Theory of Sound, Volume 2, Dover Publications, Incorporated, New York,(1945).
11. P. Lueg, “Process of Silencing Sound Oscillations, “U.S. Patent, NO.2, 043, 416. Application: 8 March(1934). Granted: 9 June(1936).
12. P. Lueg, “Verfahren Zur Dampfung Von Schallschwingungen, DRP(German Patent) No.655, 508. Filed: 27 January(1933). Granted: 30 December(1937).
13. H.F. Olson and E.G. May, “Electronic Sound Absorber” J. Acoust. Soc. Am., 25, pp.1130-1136,(1953).
14. H.F. Olson, “Acoustical Engineering,” D. Van Nostrand Company Princeton, NJ, (1957).
15. W.B. Conover, “Fighting Noise with Noise,” Noise Control, 92, pp.78-82, (1956).
16. M.J.M. Jessel and G.A. Mangiante, “Active Sound Absorbs in an Air Duct,” Journal of Sound and Vibration, 23 ,pp.383-390, (1972).
17. M.A. Swinbanks, “The Active Control of Sound Propagation in Long Ducts,” Journal of Sound and Vibration, 27, pp.411-436, (1973).
18. D. guicking, K. Karcher and M.Rollwage, “Active Control of the Acoustic Reflection Coefficient at Low Frequencies,” Inter-Noise, 83, pp.419-422, (1983).
19. D. Guicking, K. Karcher and M. Rollwage, “Coherent Active Method for Applications in Room Acoustics, “J. Acoust. Soc. Am., 78, pp.1426-1434, (1985).
20. G.E. Warnaka, L.A. Poole and J. Tichy, “Active Acoustic Attenuator,” U.S. patent NO.4, 473, 906. Application: 8 December (1980). Granted: 25 September(1984).
21. G.E. Warnaka, “Active Attenuation of Noise – The State of the Art,” Noise Control Engineering, 18, pp.100-110,(1982).
22. G.E. Warnaka, L.A. Poole and J. Tichy, “Improvements in Adaptive Active Attenuators,” Inter-Noise, 81, pp.307-310,(1981).
23. M.C.J. Trinder and O.A. Nelson, “Active Noise Control in Finite Length Ducts,” Journal of Sound and Vibration, 89, pp.95-105,(1983)
24. P.A. Nelson and S.J. Elliott, “Active Control of Sound,” Academic Press, London,(1990).
25. R.F. La Fontaine and I.C. Shepherd, “An Experimental Study of a Broad band Active Attenuator for Cancellation of Random Noise in Ducts,” Journal of Sound and Vibration, 91, pp.351-362,(1983).
26. T. Enokida, H. Hamada, T. Miura, M. Takahashi, T. Kuribayashi and K. Asami, “Design of Electric Sound Cancellation System for Air-Condition Ducts.” Inter-Noise, 86, pp.589-594,(1986).
27. L.J. Eriksson, “Active Sound Attenuation Using Adaptive Digital Signal Processing Techniques,” Ph. D. Thesis, University of Wisconsin-Madison,(1985).
28. L.J. Eriksson and M.C. Allie, “A Practical System for Active Attenuation in Ducts,” Journal of Sound and Vibration, 22, pp.797-802,(1988).
29. Nelson Industries, “DIGISONIX® Digital Sound Cancellation Systems,” Technical Brochure Dx-EDS-1/389, Madison, WI,(1989).
30. L.D. Lafleur, F.D. Shidles and J.E. Hendrix, “Acoustically Active Surfaces Using Piezorubber,” J. Acoust. Soc. Am. 90, pp.1230-1236,(1991).
31. T.R. Howarth, “Active Underwater Acoustic Attenuation Coatings,” Ph. D. Thesis, University of Pennsylvania State,(1991).
32. E.G.Richardson, Technical Aspects of Sound, Volume 2, Elserier Publishing Company, Amsterdam,(1957).
33. E. Meyer and K. Tamm, “An Acoustic Method for Determining the Dynamic Bulk Muldulus of Elasticity and the Loss Factor of Plastic Materials,“ Akustische Zeitschrift, 7, pp.45-50,(1942).
34. E. Meyer and H.Oberst, “Sound Absorption and Sound Absorbers in Water” NAVSHIP Report 900, 164, U.S. Bureau of Ships,(1954).
35. NDRC Division 6, “Underwater Sound Equipment,” Countermeasures, 19, Washington, DC,(1946).
36. V.W. Kuhl, H. Oberst and E. Skudrzyk, “Impulseverfahren Zur messung der reflexion von wasserchall-absorben in rohren,” Acustica, 3, pp.421-433,(1953).
37. W.S. Cramer, “Pulse Tube for Acoustic Measurements,” U.S. Naval Ordnance Laboratory, NAVORD Report 2257,(1952).
38. W.S.Cramer, and I. Silver, “Acoustical Properties of Rubber as a Function of Chemical Composition,” U.S. Naval Ordnance Laboratory, NAVORD Report 1778,(1951) .
39. W.S. Cramer, ”Theoretical Study of Underwater Sound Absorbing Layers,” U.S. Naval Ordnance Laboratory, VAVORD Report 2803(1953).
40. W.S. Cramer, “Propagation of Stress Waves in Rubber Rods,” Journal of Polymer Science, XXⅥ, pp.57-65,(1957).
41. W.S. Cramer, “Anechoic Structures for Underwater Sound,” U.S. Navy Journal of Underwater Acoustics, 10, pp.57-93,(1960).
42. W.S. Cramer, “Characteristics of Wave Guides Used to Evaluate Materials Intended for Underwater Acoustic Applications,” San Francisco Bay Naval shipyard, Rubber Laboratory Report 165-50,(1967).
43. W.S. Cramer, “Anechoic Coatings-Present Status and Future Problem,” U.S. Navy Journal of Underwater Acoustics, 20, pp.7-26,(1970).
44. W.S. Cramer, “Measurement of the Acoustic Properties of Solid Polymers,” U.S. Navy Journal of Underwater Acoustics, 20, pp.7-26,(1970).
45. B.F. Goodrich Company, “Products-Materials for Underwater Sound Applica-tions,” Akron, OH,(1964).
46. E.M. Kerwin, Jr., “Mechanisms and Measurements of Structural Damping,” U.S. Navy Journal of Underwater Acoustics, 13, pp.1021-1048,(1963).
47. E.M. Kerwin, Jr., E.F. Berkman, “Unified Approach to the Technology of Thin Compliant Coatings,” Volumes I-Ⅵ, Bolt Beranek and and Newman Inc., BBN Report 2374,(1972).
48. E.M. Kerwin, Jr., E.F. Berkman and S.A. Africk, “Modeling of Underwater Acoustic Compliant Coatings: Effect of Static Pressure on Acoustic Performance and Optimal Design of Decoupling Coatings,” Bolt Beranek and Newman Inc., BBN Technical Memorandum 322,(1976).
49. S.A. Africk, E.M. Kerwin, Jr., N.C. Martin and E.F. Berkman, “Analytical Design of Anechoic Coatings: Design Implementation and Testing of RD-2-A High Frequency Absorber, “Bolt Beranek and Newman Inc., BBN Report 3787,(1979).
50. W.M. Madigosky, R.W. Harrison and K.P. Scharnhorst, “An Experimental Study of Multiple Scattering frome Resonant Inclusions in Composite Materials, “The Pennylvania State University, University Park, pp.615-626,(1987).
51. W.M. Madigosky and K.P. Scharnhorst, “Acoustic Wave Propagation in Materials with Inclusions or Voids,“ American Chemical Society, Washington, DC, p229-247,(1990).
52. R.J. Bobber, Underwater Electroacoustic Measurements, U.S. Government Printing Office, Washington, D.C.(1970).
53. J. M. Gere and S. P, Timoshenko, Mechanics of Materials, PWS-KENT, publishing Co. U. S. A. (1990)
54. A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Application, Acoust. Soc. Am. U. S. A.(1994)
55. K. B. Ginn, Architectural Acoustics, Bruel & Kjaer, D. K.(1978)
56. A. Lakhtakia, V. K. Varadan and V. V. Varadan: “Scattering and Absorption Characteristics of Lossy Dielectric, Chiral, Nonspherical Objects,” Applied Optics, 24(23), pp. 4146-4154.(1985)
57. C. L. Darner, “An Anechoic Tank for Underwater Sound Measurements under High Hydrostatic Pressures, ” J. Acoust. Soc. Am. 26, p.221(1945)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code