Responsive image
博碩士論文 etd-0830105-135234 詳細資訊
Title page for etd-0830105-135234
論文名稱
Title
導波經缺陷後之波式轉換研究
The Study of Mode Conversion Phenomenon by Guided Waves Interacted with Defect
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
196
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-30
繳交日期
Date of Submission
2005-08-30
關鍵字
Keywords
波傳花樣、波式轉換、導波
Mode Conversion, Guided Wave, Wave Profile
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
導波於煉油廠、化學廠以及發電廠的管線檢測之研究在近十年來引起了極大的興趣,此乃因為其能夠對長距離的管線進行快速檢測與無需除去管線包覆層之優點。近來檢測缺陷之研究乃藉由分析缺陷所造成的反射回波係數來判斷缺陷,而本論文的目的為利用單點激發、環狀逐點接收導波波傳訊號的方式,分析導波的波傳花樣變化情形,並針對此花樣中較大能量分佈之周向位置,進行過缺陷後波式轉換之研究。
本論文是利用局部負載的激發源,分別激發非軸向對稱模態與軸向對稱模態之導波於有全周向缺陷與無缺陷的碳鋼管進行比對與分析,且由導波傳遞時的花樣變化情形,來探討不同模態的導波,隨著傳遞距離、激振頻率的不同,使周向能量分佈產生變化。對於本論文所激發的非軸向對稱模態導波來說,由於激發的範圍為非頻散的,其對應的相位速度與群波速度變化不大,所以其波傳花樣變化也不大,並且可由其周向能量分佈最大的位置,進行過缺陷後之波式轉換分析,其波式轉換而產生的各種新模態將可以更完整地被激振出。
最後,可藉由相位速度頻散圖預測因波式轉換所產生新模態的種類與個數,並與實驗進行比較。
Abstract
Tremendous interest to the study of guided waves in pipe inspection in the oil, chemical, and power generating industries has peaked during the last decade. Since the advantages are inspecting long lengths of pipe quickly and without removing insulation. Recent researches in defects inspection are determined by reflection coefficients from the cracks. However, the purpose of this thesis is to excite at a single probe position and to receive the signals of guided waves with the form of loops. For the variations of wave profiles of guided wave, this thesis aimed at the largest energy distribution of wave profiles to proceed with the researches of mode conversion phenomena caused by defects.
This thesis utilizes the partial loading source, and excites the non-axisymmetric and axisymmetric guided waves individually along the carbon steel pipes with circumferential defects and without defects to contrast and analyze. According to the change of wave profiles, we can find the variables that change wave profiles for different guided waves modes include propagating distance and frequency, and these cause that the circumferential energy distribution will change. For the non-axisymmetric guided waves in this thesis are non-dispersive, and its variations of phase velocity and group velocity are small, so the variations of wave profiles are also small. Moreover we study the mode conversion phenomena caused by defects from its position which the circumferential energy is largest. It also investigates new modes from mode conversion phenomena produced by defects more completely.
Finally, we can predict the types and the number of new modes from mode conversion phenomena by phase velocity dispersion curve, and compare with the experiments well.
目次 Table of Contents
目錄..................................................i
表目錄................................................iv
圖目錄................................................vi
中文摘要..............................................xiv
英文摘要..............................................xv
第一章 緒論...........................................1
1.1前言...............................................1
1.2文獻回顧...........................................4
1.3研究方法...........................................8
第二章 理論分析.......................................12
2.1導波在圓管中傳播的波動方程式.......................12
2.1.1縱向模態.........................................14
2.1.2扭矩模態.........................................14
2.1.3撓曲模態.........................................15
2.2頻散曲線...........................................17
2.3波形結構...........................................20
2.4波式轉換...........................................22
第三章 實驗方法與步驟.................................35
3.1實驗目的...........................................35
3.2實驗儀器設備.......................................36
3.3實驗管件規格.......................................38
3.4實驗設定與架構.....................................39
3.4.1實驗儀器設備之設定...............................39
3.4.2試管件的格點配置.................................44
3.5探頭支撐機構的設計與製作...........................47
3.6實驗步驟...........................................49
第四章 實驗結果與討論.................................66
4.1探頭支撐機構之探討.................................66
4.2實驗設定方法討論...................................71
4.2.1實驗儀器架設之討論...............................71
4.2.2自製水路之討論...................................74
4.3激發軸對稱模態L(0,1)與非軸對稱模態F(1,1)...........75
4.3.1激發軸對稱模態L(0,1)的討論.......................75
4.3.2激發非軸對稱模態F(1,1)的討論.....................83
4.3.3波傳花樣圖之討論.................................90
4.3.3.1激發非軸向對稱模態F(1,1)的討論.................93
4.3.3.2激發軸向對稱模態L(0,1)的討論...................95
第五章 結論與建議.....................................154
5.1結論............................................. .154
5.2建議與未來展望.....................................156
參考文獻.. ...........................................159
附錄A:試管件圓周方向等分十六點的實驗.................165
參考文獻 References
1.D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
2.陳永增、鄧惠源,非破壞檢測,全華科技,臺北,1999。
3.J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
4.P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
5.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
6.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
7.J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
8.J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
9.J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.

10.A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
11.R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustica, Vol. 17, pp. 218-222, 1966.
12.R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustica, Vol. 17, pp. 317-329, 1972.
13.D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
14.W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
15.G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
16.G. M. Light, N. R. Joshi and Soung-Nan Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, pp. 494, Vol. 44, 1986.
17.W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
18.S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
19.H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.

20.J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
21.J.J. Ditri, J.L. Rose, "Excitation of Guided Elastic Wave Modes in Hollow Cylinders by Applied Surface Tractions", J. of Applied Phys., Vol. 72, No. 7, 1992.
22.H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
23.J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
24.J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
25.J. Li and J. L. Rose, “Angular-Profile Tuning of Guided Waves in Hollow Cylinders Using a Circumferential Phased Array,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 49, pp. 1720-1729, 2002.
26.T. Hayashi, K. Kawashima, Z. Sun, J. L. Rose, “Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method,” Journal of Acoustical Society of America, Vol. 113, pp. 1241-1248, 2002.
27.D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
28.D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics, Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.

29.M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
30.P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
31.M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The s0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
32.O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the s0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” J. Acoust. Soc. Am., Vol. 112, No. 6, December, pp. 2589-2601, 2002.
33.D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-, 1995.
34.D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
35.M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
36.D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” J. Appl. Mech., Vol. 65, pp. 635-641, 1998.
37.D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” J. Appl. Mech., Vol. 65, pp. 649-656, 1998.
38.D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
39.A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” J. Acoust. Soc. Am., Vol. 114, No. 2, August, pp. 611-625, 2003.
40.A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G.. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E Int, Vol. 37, No. 3, pp.167-180, 2004.
41.H. Kwun and K. A., “Experimental Observation of Elastic-wave Dispersion in Bonded Solid of Various Configurations,” Journal of the Acoustical Society of America, Vol. 99, pp. 962-968, 1996.
42.Younho Cho, “Estimation of Ultrasonic Guided Wave Mode Conversion in a Plate with Thickness Variation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 3, pp. 591-603, 2000.
43.J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
44.M. G. Silk and K. P. Bainton, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, Vol. 17, pp. 11-19, 1979.
45.B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
46.李秉鴻,應用扭矩模態導波於管線檢測之實用性評估,國立中山大學機械與機電工程研究所碩士論文,中華民國93年7月。
47.謝明夏,以導波法檢測管路中缺陷的研究,國立中山大學機械與機電工程研究所碩士論文,中華民國92年7月。
48.Dongshan Guo and Tribikram Kundu, “A New Transducer Holder Mechanism for Pipe Inspection,” Journal of the Acoustical Society of America, Vol. 110, Issue 1, pp. 303-309, 2001.
49.Panametrics, Technical Notes, pp. 34-35.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.165.248.212
論文開放下載的時間是 校外不公開

Your IP address is 54.165.248.212
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code