Responsive image
博碩士論文 etd-0830106-191348 詳細資訊
Title page for etd-0830106-191348
論文名稱
Title
蛋白質支鏈結構之螞蟻預測演算法
An Ant Colony Optimization Approach for the Protein Side Chain Packing Problem
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
45
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-06
繳交日期
Date of Submission
2006-08-30
關鍵字
Keywords
蛋白質、支鏈、結構預測、螞蟻演算法
protein, ACO, side chain, structure prediction
統計
Statistics
本論文已被瀏覽 5692 次,被下載 2718
The thesis/dissertation has been browsed 5692 times, has been downloaded 2718 times.
中文摘要
蛋白質支鏈結構預測是蛋白質三級結構預測中重要的一環,蛋白質支鏈結構預測問題已被證明是NP-hard,此一複雜問題可以轉化為尋找完全子圖的問題,並使用螞蟻演算法求得近似最佳解。我們先建立一個rotamer library作為模板,再根據主鏈上的兩個雙面角ψ和φ,為每個胺基酸位置找到一個適當的rotamer,接著用計分函式判斷螞蟻演算法所得解的好壞。我們的計分函式考慮了雙硫鍵、分子間氫鍵、電荷間作用力及凡得瓦力等因素對蛋白質支鏈結構的影響,實驗結果顯示,我們的計分函式可分辨預測結果是否為穩定的三級結構,具有生物上的意義。
將我們的預測方法與SCWRL 3.0及R3兩種方法比較,雖然在執行速度上不及兩者,但是有較高的準確率。
Abstract
The protein side chain prediction is an essential issue, in protein structure prediction, protein design, and protein docking problems. The protein side chain packing problem has been proved to be NP-hard. Our method for solving this problem is first to reduce it to the clique finding problem, and then we can apply the Ant Colony Optimization (ACO) algorithm to solve it. In knowledge-based methods, the rotamers are chosen from the rotamer library, which are
based on the pair of dihedral angles, ψ and φ, of backbones. We take the coordinate rotamer library as the template, so we do not need the complicated energy function to calculate the bond length and bond angle. We use a simple score function to evaluate the goodness of a solution of the ACO algorithm. The score function combines some factors, such as charge-charge interaction, intermolecular hydrogen bonds, disulfide bonds and van der Waals interactions. The experimental results show that our score function is biologically sensible. We compare our computational results with the results of SCWRL 3.0 and the
residue-rotamer-reduction (R3) algorithm. The accuracy
of our method outperforms both SCWRL 3.0 and R3 methods.
目次 Table of Contents
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . 3
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . 4
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . 0
Chapter 1. Introduction . . . . . . . . . . . . . . . . . 1
Chapter 2. Preliminaries . . . . . . . . . . . . . . . . 4
2.1 Properties of Proteins . . . . . . . . . . . . . . . 4
2.2 PreviousWorks . . . . . . . . . . . . . . . . . . . 13
2.3 Ant Colony Optimization Algorithm(ACO) . . . . . . . 14
Chapter 3. The Method for Side Chain Determination . . . 18
3.1 The Definition of the Protein Side Chain Packing Problem . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Overview of Our Algorithm . . . . . . . . . . . . 20
3.3 The Rotamer Library . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 The Score Function . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 4. Experimental Results . . . . . . . . . . . . . 30
Chapter 5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . 34
BIBLIOGRAPHY . . . . . .. . . . . . . . . . . . . . . . . 35
參考文獻 References
[1] A. D. MacKerell Jr., B. Brooks, C. L. Brooks, L. Nilsson, B. Roux, Y. Won, and M. Karplus, “Encyclopaedia of computational chemistry,” Encyclopaedia of Computational Chemistry, Vol. 1, pp. 271–277, 1998.
[2] M. J. Bower, F. E. Cohen, and R. L. Dunbrack Jr., “Prediction of protein sidechain rotamers from a backbone-dependent rotamer library: A new homology modeling tool,” Journal of Molecular Biology, Vol. 267, No. 5, pp. 1268–1282, 1997.
[3] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “A program for macromolecular energy, minimization, and dynamics calculations,” Journal of Computational Chemistry, Vol. 4, pp. 187–217, 1983.
[4] A. A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack Jr., “A graph-theory algorithm for rapid protein side-chain prediction,” Protein Science, Vol. 12, pp. 2001–2004, 2003.
[5] D. A. Case and T. E. Cheatham, “The Amber biomolecular simulation programs,”Journal of Computational Chemistry, Vol. 26, pp. 1668–1688, 2005.
[6] J. Desmet, M. D. Maeyer, and I. Lasters, “The dead-end elimization theorem and its use in protein side-chain positioning,” Nature, Vol. 346, pp. 539–542, 1992.
[7] M. Dorigo and M. L. Gambardella, “Ant colony system: A cooperative learning approach to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53–66, 1997.
[8] M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: An autocatalytic optimizing process. Italy: Technical Report, Politecnico di Milan, 1991.
[9] C. Gibas and P. Jambeck, Developing Bioinformatics Computer Skills. O’Reilly & Associates, Inc., first ed., 2001.
[10] IUPAC-IUB Commission on Biochemical Nomenclature, “Abbreviations and symbols for the description of the conformation of polypeptide chains,” Journal of Biological Chemistry, Vol. 246, No. 24, pp. 6489–6497, 1970.
[11] N. Krasnogor, W. E. Hart, J. Smith, and D. A. Pelta, “Protein structure prediction with evolutionary algorithms,” In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakaiela, and R.E. Smith, editors, GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufman, 1999.
[12] N. I. H. (National Institutes of Health), “NCBI (National Center for Biotechnology Information).” http://www.ncbi.nlm.nih.gov/.
[13] N. A. Pierce and E. Winfree, “Protein design is NP-hard,” Protein Engineering Design and Selection, Vol. 15, No. 10, pp. 779–782, 2002.
[14] J. W. Ponder and F. M. Richards, “Tertiary templetes for proteins: Use of packing criteria in the enumeration of allowed sequences for different structural classes,” Journal of Molecular Biology, Vol. 193, pp. 775–792, 1987.
[15] R. L. Dunbrack Jr. and F. E. Cohen, “Bayesian statistical analysis of protein side-chain rotamer preferences,” Protein Science, Vol. 6, pp. 1661–1681, 1997.
[16] R. L. Dunbrack Jr. and M. Karplus, “Backbone-dependent rotamer library for proteins: Application to side-chain prediction,” Journal of Molecular Biology, Vol. 230, pp. 543–574, 1993.
[17] R. L. Dunbrack Jr. and M. Karplus, “Conformational analysis of the backbonedependent rotamer preferences of protein sidechains,” Nature Structural Biology, Vol. 1, pp. 334–340, 1994.
[18] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, “Stereochemistry of polypeptide chain configurations,” Journal of Molecular Biology, Vol. 7,
pp. 95–99, 1963.
[19] G. N. Ramachandran and V. Sasisekharan, “Conformation of polypeptides and proteins,” Advances in Protein Chemistry, Vol. 23, pp. 283–437, 1968.
[20] I. Ruczinski, C. Kooperberg, R. Bonneau, and D. Baker, “Distributions of beta sheets in proteins with application to structure prediction,” Proteins: Structure, Function, and Genetics, Vol. 48, pp. 85–97, 2002.
[21] G. E. Schulz and R. H. Schirmer, Principles of Protein Ptructure. New York: Springer-Verlag, 1979.
[22] Z. Xiang and B. Honig, “Extending the accuracy limits of prediction for sidechain conformations,” Journal of Molecular Biology, Vol. 311, pp. 421–430, 2001.
[23] W. Xie and N. V. Sahinidis, “Residue-rotamer reduction algorithm for the protein side-chain conformation problem,” Bioinformatics, Vol. 22, No. 2, pp. 188–194, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code