Responsive image
博碩士論文 etd-0830107-150918 詳細資訊
Title page for etd-0830107-150918
論文名稱
Title
音圈式致動器於軟板沖孔加工之應用
Application of A Voice Coil Actuator for Punching Flexible Printed Circuit Boards
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-27
繳交日期
Date of Submission
2007-08-30
關鍵字
Keywords
S型速度曲線、運動特徵、音圈式致動器、軟性印刷電路板
S-curve velocity profile, voice coil actuator, FPCBs, motion characteristics
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
過去用於軟性印刷電路板沖孔加工的作動機台,於機構設計上多半是以旋轉式馬達作為動力來源,再透過一連串的機械元件使得旋轉運動轉換為直線運動,而達到線型作動輸出的目的。然而因這些轉換用的機械元件,造成一些無法避免的問題如機台本身的體積龐大以及作動過程中元件彼此間的背隙與摩擦等,對於系統動態表現與精度都有不良的影響。而音圈式致動器具有線型直接輸出、高響應及高推力的特性,因此本研究以音圈式致動器應用在軟性印刷電路板沖孔加工。S型速度曲線為目前工業界針對點到點位移間歇式作動領域常使用的型態,因其具有將急跳度有限化的特性,可進一步降低振動及提升作動精度。依據沖孔運動特性所規劃後的S型速度曲線與音圈式致動器作一整合應用,去分析在這樣垂直向線型作動場合中,整體系統的動態表現性能。最後透過實驗分析歸納出沖孔機構其運動特徵對於沖孔品質的影響因素,而研究成果可提供以此類型線型致動器應用在相關垂直向線型作動領域其設計依據。
Abstract
In the past the machinery used in punching of flexible printed circuit boards(FPCBs), it used mostly the rotary motor as the power source in the mechanism design. To transfer rotary motion to linear motion need a succession of mechanical conversion components, in order to achieve the purpose of linear output. However these mechanical parts for transforming bring some unavoidable problems such as the machinery itself huge volume, backlash and friction which created during the action process, all have harmful influences on the system dynamic performance and precision. Voice coil actuator has direct-drive output, high response and high thrust force these characteristics, therefore this research apply voice coil actuator to the punching of flexible printed circuit boards. For present industry, S-curve velocity profile is often used in point-to-point displacement intermittent action applications, due to its jerk-limited characteristic for reducing vibration and raising precision. Then integrating plans of S-curve velocity profile with voice coil actuator based on punching characters, to analyze the whole system dynamic performance in such a vertical linear output application. Then generalizing the dependence of influence factors of punching quality and motion characteristics of punching mechanism through experimental results. The achievement of this research could provide references for some related designers using similar linear actuators in vertical linear output applications.
目次 Table of Contents
誌謝..................................................................................................................I
目錄………….……………………………………….…………………..….II
圖目錄……………………………………………………………………...III
表目錄……………………………………………………………………...VI
中文摘要…………………………………………………………………..VII
英文摘要…………………………………………………………………VIII

第一章 緒論…..……………………………………...……………....…..…1
1.1 研究背景與動機……………….……………………………….....1
1.2 文獻回顧……………….……………………………………….....6
1.3 研究目的與研究方法......................................................................9
1.4 內容簡介…...…........……….…………………………....………10
第二章 音圈式致動器…………..………………...………………………11
2.1 音圈式致動器其結構與作動原理.…….………..………………11
2.2 音圈式致動器動力與電氣方程組….……….…..……….……...13
2.3 音圈式致動器之轉移函數………………………..…………..…15
2.4 音圈式致動器穩態特性分析….………….……..………………17
2.5 音圈式致動器應用參數決定……………………..……………..20
第三章 沖孔運動曲線規劃與合成…..…………...………………………23
3.1 沖孔運動曲線特性…..………………………………..…………23
3.2 S型速度曲線….….........…...……...………….………….……...23
3.3 PVT運動指令規劃……........……………………...…………….33
3.4 沖孔運動曲線之時序規劃…….……..…….……………………36
第四章 動態系統建構與模擬……..……………………………………...44
4.1 整體沖孔運動其動態推力變化之分析………..…….………….44
4.2 整體沖孔運動性能分析………………………..…….………….50
4.3 整體沖孔運動其四象限操作關係...….………..…….………….54
4.4 結構剛性模擬分析…………………………………..…….…….58
第五章 實際作動表現與量測結果……………………………………….65
5.1 整體系統架構…………………………………..…….………….65
5.2 未沖孔前所有匹配運動曲線其運動特徵量................................70
5.3 運動特徵對於沖孔性能的影響………………………………....73
第六章 結論與討論………..……...………………………………………83
參考文獻…………………………………………………………………...86
附錄A 數位伺服驅動器詳細規格..….…………………...………………90
附錄B 光學式位移感測器詳細規格..….………….……..………………92
參考文獻 References
[1] John, M. and Cynthia, B., 2004, “Voice Coil Actuators for Human-Robot Interaction,” IEEE/RSJ International Conference on Intelligent Robotics and Systems, Vol. 1, pp. 852-858.
[2] 薛淳與,2004,連桿式軟板沖孔機構分析與沖孔品質改善,國立中山大學機械與機電工程系碩士論文。
[3] 蔡孟哲,2004,凸輪式線性致動器之設計與製造,國立中山大學機械與機電工程系碩士論文。
[4] Howe, D., 1998, “Electromagnetic Actuation Systems – Design and Applications,” IEE Colloquium on Limited Motion Electrical Actuation Systems, pp. 1/1-1/9.
[5] Howe, D., 2000, “Magnetic actuators,” Sensors and Actuators A: Physical, Vol. 81, No. 1, pp. 268-274.
[6] John, R. B., 2006, “Toward the Instant-On Actuator,” Machine Design, 27, July.
[7] BEI Technologies, Inc., 2002, Voice Coil Actuators – An Application Guide.
[8] Boldea, I. and Nasar, S. A., 1999, “Linear Electric Actuators And Generators,” IEEE Transactions on Energy Conversion, Vol. 14, No. 3, pp. 712-717.
[9] Liu, Y. T., Fung, R. F. and Wang, C. C., 2005, “Precision position control using combined piezo-VCM actuators,” Precision Engineering, Vol. 29, No. 4, pp. 411-422.
[10] Chen, J. L., Chang, H. Y. and Wu, C. S., 2003, “A study on a Long Range Nano-Precision Positioning System,” ASME International Mechanical Engineering Congress & Exhibition, 15-21, Nov.
[11] Okamura, M., Ohshige, T. and Watanabe, M., 1988, “High speed and high accuracy XY-stage for electronic assembly,” Fourth IEEE/CHMT European International Electronic Manufacturing Technology Symposium, pp. 104-107.
[12] Cheung, N. C. and Cheung, B. M. Y., 1997, “Modelling and control of a high speed, long travel, dual voice coil actuator,” IEEE International Conference on Power Electronics and Drive Systems, Vol. 1, pp. 270-274.
[13] Awaddy, B. A., Shih, W. C. and Auslander, D. M., 1998, “Nanometer positioning of a linear motion stage under static loads,” IEEE/ASME Transactions on Mechatronics, Vol. 3, No. 2, pp. 113-119.
[14] Park, K. H., Choi, C. H. and Ryu, J., 2001, “Hybrid actuator for high speed and high precision optical disk drives,” Mechatronics, Vol. 11, No. 5, pp. 527-543.
[15] Mori, S., Hoshino, T., Obinata, G. and Ouchi, K., 2003, “Air-bearing linear actuator for highly precise tracking,” IEEE Transactions on Magnetics, Vol. 39, No. 2, pp. 812-818.
[16] Green, M. A., 1995, “A superconducting linear motor drive for a positive displacement bellows pump for use in the g-2 cryogenics system,” IEEE Transactions on Applied Superconductivity, Vol. 5, No. 2, pp. 972-975.
[17] Stiehl, W. D., Lieberman, J., Breazeal, C., Basel, L., Lalla, L. and Wolf, M., 2005, “Design of a therapeutic robotic companion for relational, affective touch,” IEEE International Workshop on Robot and Human Interactive Communication, pp. 408-415.
[18] Stiehl, W. D., Lieberman, J., Breazeal, C., Basel, L., Cooper, R., Knight, H., Lalla, L., Maymin, A. and Purchase, S., 2006, “The huggable: a therapeutic robotic companion for relational, affective touch,” IEEE Consumer Communications and Networking Conference, Vol. 2, pp. 1290-1291.
[19] Higuchi, T. and Bang, Y., 1998, “Development of a Micro Drilling Machine Using Voice Coil Motors,” International Journal of Japan Society Precision Engineering, Vol. 32, No. 2, pp. 116-121.
[20] Higuchi, T. and Bang, Y., 1998, “Development of a Micro Drilling Machine Using Voice Coil Motors (Part2) – Thrust Controlled Drilling,” International Journal of Japan Society Precision Engineering, Vol. 32, No. 4, pp. 267-272.
[21] Higuchi, T. and Bang, Y., 1999, “Drill Breakage Detection and Measurement of Distance to the Drilling Surface on the Micro Drilling Machine Using Voice Coil Motors,” International Journal of Japan Society Precision Engineering, Vol. 33, No. 1, pp. 15-20.
[22] Higuchi, T. and Hou, E., 1998, ”Automatic Drilling Machine for Small Hole Machining,” JP10006113.
[23] YAMAHA FINE TECHNOLOGIES CO, Ltd.
[24] Lewin, C., 1994, “Motion control gets gradually better,” Machine Design, No. 7, pp. 90-94.
[25] Meckl, C. H. and Arestides, P. B., 1998, “Optimized S-Curve Motion Profiles for Minimum Residual Vibration,” Proceeding of the American Control Conference, pp. 2627-2631.
[26] Lin, C. F. and Tsay, D. M., 2005, “Asymmetrical inputs for minimizing residual response,” IEEE International Conference on Mechatronics, pp. 235-240.
[27] 吳光倫,2000,集結式機台機械手臂控制之研究,國立臺灣大學機械工程系碩士論文。
[28] 陳志豪,1997,伺服定位系統之強健設計實務,國立成功大學機械工程系碩士論文。
[29] 郭洲成、陳志豪、及蔡明祺,1998,“S-curve速度規劃應用於馬達定位控制,” 中國機械工程學會第十五屆全國學術研討會論文集。
[30] 曾旭升,1996,CNC控制器速度及加減速規劃之研究,國立交通大學機械工程系碩士論文。
[31] 洪明諒,2000,高速高精度CNC工具機之前饋控制,國立清華大學動力機械工程學系碩士論文。
[32] 張維仁,2002,具急衝度限制之多軸運動加減速規劃,國立中央大學機械工程系碩士論文。
[33] Jung, S. Y., Jung, H. K., Chun, J. S., Kim, D. H. and Hwang, J. H., 2001, “Dynamic characteristics of partially excited permanent magnet linear synchronous motor considering end-effect,” IEEE International Conference on Electric Machines and Drives, pp. 508-515.
[34] Kim, J. H., Choi, J. W. and Sul, S. K., 2002, “High precision position control of linear permanent magnet synchronous motor for surface mount device placement system,” Proceedings of the Power Conversion Conference, Vol. 1, pp. 37-42.
[35] Ryu, H. M. and Sul, S. K., 2002, “Position control for direct landing of elevator using time-based position pattern generation,” IEEE Industry Application Conference, 37th IAS Annual Meeting, Vol. 1, pp. 644-649.
[36] Kim, Y. O. and Ha, I. J., 2003, “Time-optimal control of a single-DOF mechanical system considering actuator dynamics,” IEEE Transactions on Control Systems Technology, Vol. 11, No. 6, pp. 919-932.
[37] Marcos, A. C., 1995, “Latest Developments in Voice Coil Actuators,” Power Transmission Design, pp. 67-71.
[38] Electro-Craft Corporation, 1977, DC Motors, Speed Controls, Servo Systems, Pergamon Press Ltd., USA.
[39] Ruo, C. W., Shih, C. L. and Lee, W. Y., 2003, “Planning S-curves In The Coordinated PTP Motion of Multiple-Axis Machines Under Velocity Acceleration And Jerk Constraints,” Journal of The Chinese Institute of Electrical Engineering, Vol. 10, No. 3, pp. 221-234.
[40] ELMO Motion Control Inc., 2004, HARmorica Digital Servo Drive Installation Guide.
[41] MicroE Systems, 2002, Mercury 2000 Smart Encoder Systems-Data Sheet.
[42] Kalpaklian, S., and Schmid, S. R., 2001, Manufacturing Engineering and Technology, Prentice-Hall, New Jersey.
[43] Beitz, W., and , K. H., 1994, Handbook of Mechanical Engineering, Springer-Verlage, London.
[44] Smith, D. A., and Bakerjian, R., 1990, Die Design Handbook, Society of Manufacturing Engineers, USA.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.210.107.64
論文開放下載的時間是 校外不公開

Your IP address is 44.210.107.64
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code