Responsive image
博碩士論文 etd-0830109-121551 詳細資訊
Title page for etd-0830109-121551
論文名稱
Title
半導體雷射泵浦薄片型Nd:GdVO4雷射之動力行為研究
A Study of Dynamical Behaviors of LD-pumped Microchip Nd:GdVO4 laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-30
繳交日期
Date of Submission
2009-08-30
關鍵字
Keywords
溫度梯度、薄片型雷射、激發調變、雙偏振、Nd:GdVO4、二極體雷射激發
temperature gradient, microchip, pump modulation, dual-polarization oscillation, laser-diode-pumped
統計
Statistics
本論文已被瀏覽 5919 次,被下載 1527
The thesis/dissertation has been browsed 5919 times, has been downloaded 1527 times.
中文摘要
本文主旨為研究二極體雷射激發薄片型Nd:GdVO4晶體所出現的現象—雙偏振,以及伴隨的動力學。我們比較了三種常見的Nd3+離子摻雜的雷射晶體:Nd:YAG、Nd:YVO4、Nd:GdVO4,Nd:YAG具有較佳的導熱係數而適用高功率;Nd:YVO4有較佳的放射截面積而提高雷射轉換效率;Nd:GdVO4則同時擁有Nd:YAG和Nd:YVO4的優點,因而針對Nd:GdVO4的文章多著重在高功率下的輸出效率。然而不同偏振的放射可在Nd:GdVO4的螢光光譜觀察到,雙偏振的雷射光卻不曾被觀察到。藉由我們的系統,成功地觀察到雙偏振。同時我們發現到可以產生雙偏振的方式,並非一般跟激發功\\率密度有關的激發條件,而是具有溫度梯度改變的激發條件。這些結果說明了與其他可以產生雙偏振的雷射系統不同之處,在於我們不需添加額外的光學元件,因此可將整體的實驗體積減小。
此外,我們呈現Nd:GdVO4雷射實驗的雷射輸出結果,包含光譜、輸入-輸出特性曲線圖、橫模圖案等的光學性質。激發光束大小與雷射模大小之間的橫模匹配,解釋了實驗觀察到的高階橫模。於功率頻譜的實驗結果,我們觀察到雷射動力學上常被探討的反相運動,但卻與一般完全反相運動不同,我們利用三維的居量反轉交錯飽和值來解釋兩者不同之處。最後,我們將系統外加激發調變來了解複雜動力學,不同的模之間的相位關係,可藉由不同的調變頻率與強度來達成。另外,我們將觀察到的激發調變動力學狀態,用包括了交錯飽和與激發調變的多模雷射方程來解釋,模擬的結果可與實驗的觀察有不錯的對應關係。
Abstract
This paper have investigated the dual polarization oscillations (DPO) and associated dynamical behaviors in laser-diode-pumped microchip Nd:GdVO4 laser. Some optical properties of Nd:YAG, Nd:YVO4, and Nd:GdVO4 laser materials are compared. The higher thermal conductivity of Nd:YAG makes it suitable for higher-power applications. The larger stimulated-emission coefficient of Nd:YVO4 material makes it favorable for increasing light-light conversion efficiency. However, Nd:GdVO4 material has high thermal conductivity and large stimulated-emission coefficient. Many experiments done to study Nd:GdVO4 crystal’s properties focused on the efficiency of high power generation. Orthogonal linearly-polarized emissions could be obtained in fluorescence spectrum of Nd:GdVO4, but DPO did not be observed in Nd:GdVO4 laser possessing a large fluorescence anisotropy with laser-diode pumping. In this paper, DPO on different transitions in laser-diode-pumped microchip Nd:GdVO4 are obtained for the first time. Furthermore, more effective generation of dual polarization oscillations is affected by the pumping conditions associated with different temperature gradient than different pumping power density. The results imply that DPO can be generated without having to use additional optical elements and Nd:GdVO4 material is suitable for the construction of compact DPO lasers.
Laser properties including oscillation spectra, input-output characteristics, pump-dependent pattern formations and noise power spectra are studied experimentally. A poor mode matching between the pump beam and lasing beam results in the generation of high order transverse modes. The observed anti-phase dynamics have been explained in terms of the reduced three-dimensional cross-saturation of population inversions among orthogonally-polarized modes. The study of dynamics of microchip Nd:GdVO4 lasers under pump modulation has also been reported in this paper. Different phase correlations among laser modes are obtained by tuning the modulation frequency and amplitude. The observed dynamical states are reproduced theoretically by rate equations of multimode class-B lasers including the cross-saturation among individual modes and the pump modulation.
目次 Table of Contents
中文摘要
英文摘要
致謝辭
目錄
圖表目錄
第一章 簡介........................................................................1
1-1 二極體激發固態晶體..................................................1
1-2 Nd:GdVO4雷射晶體...................................................3
1-3 薄片型雷射的複雜動力學行為................................10
1-4 論文結構....................................................................12

第二章 雙偏振在二極體雷射激發Nd:GdVO4的觀察...13
2-1 實驗裝置....................................................................14
2-2 光頻譜與雷射輸出的偏振特性................................15
2-3 輸入-輸出特性曲線...................................................18
2-4 橫模圖樣....................................................................19
2-5 反相運動....................................................................22
2-6 小結............................................................................27

第三章 激發光源的聚焦條件對雙偏振的影響..............28
3-1 實驗架設....................................................................28
3-2 物鏡倍率的影響........................................................29
3-3 激發光斑在不同的位置下的影響............................33
3-4 小結............................................................................35

第四章 Nd:GdVO4雷射在激發調變下的動力學..........37
4-1 實驗架設....................................................................38
4-2 實驗系統條件............................................................39
4-3 分歧圖與動力學狀態................................................41
4-4 轉變到混沌狀態........................................................47
4-5 訊息流分析................................................................49
4-6 小結............................................................................53

第五章 Nd:GdVO4在激發調變下對不同頻率的動力學反應.....55
5-1 不同調變頻率對集體動力行為的影響....................55
5-2 不同調變頻率下調變強度對系統狀態的影響........59
5-3 數值模擬....................................................................65
5-4 小結............................................................................70

第六章 結論、現在與未來展望......................................71
6-1 總結............................................................................71
6-2 現在............................................................................72
6-3 未來展望....................................................................76

參考文獻...........................................................................77
參考文獻 References
[1] W. Koechner, Solid State Laser Engineering, (Springer, 2006)
[2] 圖片來源:http://grad.physics.sunysb.edu/~campbell/optics/metcalf/metcalf.html
[3] 圖片來源:Laser Stars, Laser History, http://laserstars.org/history/ruby.html
[4] Kelin J. Kuhn, Laser Engineering, Chapter 10 (Prentice-Hall, 1998)
[5] J. R. O’Connor, Appl. Phys. Lett. 9, 407 (1966)
[6] R. A. Field, M. Birnbaum, C. L. Fincher, Appl. Phys. Lett. 51, 1885 (1987)
[7] A. I. Zagmennyi, v. G. Ostromov, I. A. Shcherbarkov, T. Jensen, J.-P. Meyn, and G. Huber, Sov. J. Quantum Electron. 22, 1071 (1992)
[8] T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Scherbakov, Appl. Phys. B 58, 373 (1994)
[9] K. Shimamura, S. Uda, V. V. Kochurikhin, T. Taniuchi, and T. Fukuda, Jpn. J. Appl. Phys. 35, 1832 (1996)
[10] H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, C. Q. Wang, Y. T. Chow, Cryst. Res. Technol. 33, 801 (1998)
[11] B. Zhang, G. Li, M. Chen, Z. Zhang, and Y. Wang, Opt. Lett. 28, 1829 (2003)
[12] 資料來源:CASTECH:http://www.castech.com/newEbiz1/EbizPortalFG/portal/html/index.html
[13] 資料來源:CASIX:http://www.casix.com/
[14] C. Q. Wang, Y. T. Chow, L. Reekie, W. A. Gambling, H. J. Zhang, L. Zhu, X. L. Meng, Appl. Phys. B 70, 769 (2000)
[15] J. Yang, J. Liu, and J. He, Laser Phys. Lett. 2, 171 (2005)
[16] H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, J. Opt. Soc. Am. B 19, 18 (2002)
[17] C. Czeranowsky, M. Schmidt, E. Heumann, g. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002)
[18] Yu.D. Zavartsev, A.I. Zagumennyi, F. Zerrouk, S.A. Kutovoi, V.A. Mikhailov, V.V. Podreshetnikov, A.A. Sirotkin, I.A. Shcherbakov, Quantum Electronics 33, 651 (2003)
[19] J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. Meng, L. Zhu, L. Qin, C. Du, X. Xu, and Z. Shao, J. Opt. Soc. Am. B 20, 652 (2003)
[20] C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, Appl. Phys. B 70, 471 (2000)
[21] S. P. Ng, D. Y. Tang, L. J. Qin, X. L. Meng, and Z. J. Xiong, Appl. Opt. 45, 6792 (2006)
[22] B. Zhang, G. Li, M. Chen, Z. Zhang, and Y. Wang, Opt. Lett. 28, 1829 (2002)
[23] Y. Sato, N. Pavel, and T. Taira, in OSA TOPS on Advanced Solid-State Photonics, vol. 94, Gregory J. Quarles, Ed., (Optical Society of America, Washington, DC), 405 (2004)
[24] IEEE J. of Sele. Top. In Quantum Elec. 11, 613 (2005)
[25] X. J. Wang, S. L. Zhang, G. Liu and L. G. Fei, Chin. Phys. Lett. 21, 2175 (2004)
[26] J. W. Czarske and H. Mueller, Opt. Commun. 114, 223 (1995)
[27] C. He and D.K. Killinger, Opt. Lett. 19, 396 (1994)
[28] G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Pho. Tech. Lett. 8, 1015 (1996)
[29] A. McKay, P. Dekker, D.W. Coutts, J.M. Dawes, Opt. Commun. 272, 425 (2007)
[30] L. Kervevan, H. Gilles, S. Girard, M. Laroche, and P. Leprince, Appl. Phys. B 86, 169 (2007)
[31] A. Brenier, C. Tu, Z. Zhu, and J. Li, Appl. Phys. B 89, 323 (2007)
[32] M. Brunel, A. Amon, and M. Vallet, Opt. Lett. 30, 2418 (2005)
[33] D. Y. Tang and S. P. Ng, Opt. Lett. 28, 325 (2003)
[34] J.-Y. Ko, T. Ohtomo, K. Abe, and K. Otsuka, Int. J. of Modern Phys. B 15, 3369 (2001)
[35] K. Ostuka, Nonlinear Dynamics in Optical Complex Systems (Kluwer Academic, Dordrecht, The Netherlands, 1999), pp. 85 and 233
[36] K. Otsuka, J.-Y. Ko, T. Kubota, S.-L. Hwong, T.-S. Lim, J.-L. Chern, B.-A. Nguyen and P. Mandel, Opt. Lett. 26, 1060 (2001)
[37] K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, Phys. Rev. A, 46, 1692 (1992)
[38] M.D. Wei, C.-H. Chen, and K.-C. Tu, Opt. Exp. 12, 3972 (2004)
[39] S.P. Ng, D.Y. Tang, L.J. Qin, X.L. Meng, and Z.J. Xiong, Int. J. of Bifurcation and Chaos 16, 2689 (2006)
[40] K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S.-L. Hwong, J.-Y. Ko, and J.-L. Chern, Jpn. J. Appl. Phys. 38, L1025 (1999)
[41] K. F. Wall, and A. Rosiewicz, OFC ’96 Tech. Dig. Paper TuJ1, 50 (1996)
[42] K. Otsuka, K. Kubodera, and J. Nakano, IEEE J. Quantum Electron. 13, 398 (1997)
[43] F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E.E. Peal, Phys, Rev. B 50, 14802 (1994)
[44] K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel and E. A. Viktorov, Opt. Lett. 23, 201 (1998)
[45] S.-L. Hwong, W.-L. Tsai, T.-S. Lim, and J.-L. Chern, Jpn. J. Appl. Phys. Vol. 38, L1330 (1999)
[46] H. Kogelnik and T. Li, Proc. IEEE 54, 1312 (1966)
[47] T. Kimura and K. Otsuka, IEEE J. Quantum Electron. 7, 403 (1971)
[48] Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, Jpn. J. Appl. Phys. 38, L515 (1999)
[49] K. Otsuka, IEEE J. Quantum Electron. 14, 49 (1978)
[50] K. Otsuka, Pro. Quantum Electron. 23, 97 (1999)
[51] K. Ostuka, M. Georgiou, and P. Mandel, Jpn. J. Appl. Phys. 31, L1250 (1992)
[52] P. Mandel, K. Otsuka, J. Wang, and D. Pieroux, Rhys. Rev. Lett. 76, 2694 (1996)
[53] P. Mandel, B. A. Nguyen, and K. Ostuka, Quantum Semiclassic. Opt. 9, 365 (1997)
[54] K. Otsuka, Jpn. J. Appl. Phys. 32, L1414 (1993)
[55] K. Otsuka, M. Georgiou, and P. Mandel, Jpn. J. Appl. Phys. 31, L1250 (1992)
[56] J.-Y. Ko, C.-C. Lin, K. Otsuka, Y. Miyasaka, K. Kamikariya, K. Nemoto, M.-C. Ho, and I.-M. Jiang, Opt. Express 15, 945 (2007)
[57] Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, Jpn. J. Appl. Phys. 38, L515 (1999)
[58] M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, Appl. Phys. Lett. 56, 1831 (1990)
[59] Shaw L. B., Schwartz I. B., Rogers E. A., and Roy R., Chaos 16, 015111 (2006)
[60] K. Otsuka, T. Ohtomo, A. Yoshioka, and J.-Y. Ko, Chaos 12, 678 (2002)
[61] S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, Phys. Rep.-Rev. Sec. of Phys. Lett., 416, 1 (2005)
[62] W. F. Ngai and H. F. Liu, Appl. Phys. Lett. 62, 2611 (1993)
[63] J. A. Keszenheimer and J. Balboni, Opt. Lett. 17, 649 (1992)
[64] E. G. Lariontsev, Opt. Express 2, 198 (1998)
[65] K. Otsuka, J.-L. Chern ,and J.-S. Lih, Opt. Lett., vol. 22, 292 (1997)
[66] R. Meucci, R. McAllister, and R. Roy, Phys. Rev. E, vol. 66, 026216 (2002)
[67] Zhu SQ, Lu X, Chen XF, Thornburg KS, VanWiggeren GD, Roy R, Chi. Phys. 9, 337 (2000)
[68] K. Otsuka, K. Nemoto, K. Kamikariya, Y. Miyasaka, J.-Y. Ko, and C.-C. Lin, Phys. Rev. E, vol. 76, 026204 (2007)
[69] A. Uchida, T. Sato, T. Ogawa, F. Kannari, Phys. Rev. E 58, 7249 (1998)
[70] Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 1889 (1980)
[71] C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 50, 93 (1983)
[72] N. Platt, E. A. Spiegel, and C. Tresser, Phys. Rev. Lett. 70, 279 (1993)
[73] Y. Miyasaka, K. Otsuka, T. Maniwa, and J.-Y. Ko, Phys. Rev. E 70, 046208 (2004)
[74] A. Libchaber, S. Fauve, and C. Laroche, Physica D, 7, 73 (1983)
[75] C. O. Weiss, W. Klische, P. S. Ering, and M. Cooper, Opt. Commun. 52, 405 (1985)
[76] J.-L. Chern, Phys. Rev. E 50, 4315 (1994)
[77] M. Palus, V. Komarek, Z. Hrncir, and K. Sterbova, Phys. Rev. E 63, 046211 (2001)
[78] D. Gabor, J. IEE (London) 93, 429 (1946)
[79] M. G. Rosenblum, Phys. Rev. L 76, 1804 (1996)
[80] J.-S. Lih, J.-L. Chern, and K. Otsuka, Eurpohys. Lett. 57, 810 (2002)
[81] T. Ohtomo, Y. Miyasaka, K. Otsuka, A. Okamoto, and J.-Y. Ko, Opt. Express 13, 358 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code