Responsive image
博碩士論文 etd-0830109-224440 詳細資訊
Title page for etd-0830109-224440
論文名稱
Title
高屏海域顆粒態磷之輸出通量及埋藏效率
Particulate Phosphorus Input and Burial Efficiency in the Gaoping Coastal Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-10
繳交日期
Date of Submission
2009-08-30
關鍵字
Keywords
顆粒態磷、埋藏效率、高屏溪、高屏海域
particulate phosphorus, PBE, burial efficiency
統計
Statistics
本論文已被瀏覽 5639 次,被下載 1449
The thesis/dissertation has been browsed 5639 times, has been downloaded 1449 times.
中文摘要
本文研究主要探討高屏海域顆粒態磷之來源、分佈、通量及其地化特性,進而估算磷在此區域之埋藏通量及其埋藏效率,企望有助於達成磷在高屏海域從源到匯之瞭解。
由高屏溪輸出總磷至高屏海域每年約有3.2 × 104 ton yr-1(1.03 × 109 mol yr-1),其中PIP輸出通量為2.9 × 104 ton yr-1,佔總輸出磷的90.8%, POP佔7.4%,DIP佔1.5%,DOP佔0.3%。高屏溪下游磷之主要傳輸型態為PIP,且以10-63 μm為主要傳輸粒徑。
在高屏海域中,表層沉積物磷物種之分布,PIP佔TP的80-90%,POP佔TP的10-20%,PIP之高值位於峽谷兩側(200-600 m)及峽谷頭處,其因受淡水輸出或峽谷沉積物受濁流作用溢出至陸坡造成最高值分布。沉積物之沉積速率變化範圍介於0.032-1.62 g cm-2 yr-1,亦在峽谷兩側有高值,近一步估算出近年來總磷的埋藏通量為0.02-0.84 g cm-2 yr-1,其中PIP與POP分別佔88及12%。比較於世界上其他大陸邊緣海,除高屏峽谷兩側之高值地區以外,其餘的埋藏通量與其他大陸邊緣(渤海、黃海、密西西比河三角洲等)之通量類似。
高屏海域研究區域沉積物每年之總沉降量為6.6 × 106 ton yr-1,沉積物磷之埋藏通量為1.4 mg cm-2 yr-1,埋藏量為4227 ton yr-1,佔沉降通量的0.06%。大陸棚(< 200 m)之每年磷的埋藏量佔磷埋藏量的15%,大陸坡(200-1000 m)佔69%,陸坡底部(> 1000 m)佔16%,主因大陸棚受波浪及潮汐的再擾動,干擾了沉積物的埋藏,導致在大陸棚磷的埋藏量較低。
高屏海域磷的埋藏效率(PBE)是依PBE(%)= 100 × PBF /(PBF+JP)計算而得,其中PBF為磷的埋藏量,而JP為沉積物中孔隙水之擴散量。此研究區域PBE隨站位深度而遞減,其高值(> 90%)位於南坡779-1、北坡791-L18及峽谷732-38等測站,其現象與Nazar&eacute; Canyon相似,顯示位於近岸及峽谷之PBE較高。
由高屏海域磷之收支預算模式來看,此研究區域之主要來源為高屏溪的輸入,而每年磷之輸出量為1.03 × 109 mol P yr-1,及海水中磷之淨生產力(NEP)從海水中輸入至底層沉積物之源,其通量約為1.5 × 108 mol P yr-1;但每年沉積物的累積量為1.48 × 108 mol P yr-1,估算出沉積物的累積量佔河川輸出量及NEP的12.5%。而其餘的80%左右沒有沉降於高屏海域沉積物中,可能在水體中消散或離開高屏海域到更深的海域沉積。
Abstract
The purposes of this study are to investigate the sources, distributions, fluxes and phosphorus burial efficiency (PBE) of particulate phosphorus in the Gaoping (GP) coastal sea. The GP River carried about 3.14 × 104 ton yr-1 (1.03 × 109 mol yr-1) particulate P into the GP coastal sea. The total P flux was primarily determined by the river runoff during the May-yu (monsoon) and typhoon seasons. The river P was approximately consisted of 90.8% particulate inorganic-P (PIP), 7.4% particulate organic-P (POP), 1.5% dissolved inorganic-P (DIP) and 0.3% dissolved organic-P (DOP). The particulate-P existed mainly in 10-63 μm particles.
In the GP costal sea, particulate P in surface sediments was found to be 80-90% as PIP and 10-20% as POP. The highest distribution of PIP was located on the flanks of GP Canyon at the upper slope (200-600 m) region. This distribution may be caused by plumes of river sediments or turbidity currents overflowing the canyon. The sedimentation rates of sediments ranged from 0.032 to 1.62 g cm-2 yr-1 in the GP coastal sea and the highest rates were also located on both sides of the GP Canyon. The burial fluxes of total phosphorus (TP) ranged from 0.02 to 0.84 g cm-2 yr-1, consisted approximately by 88% PIP and 12% POP. The burial fluxes of this study area were generally similar to those in other continental margins (Bohai Sea, Yellow Sea, Mississippi Delta).
The total depositions of sediment and TP were approximately 6.6 × 106 ton yr-1 and 4227 ton yr-1, respectively, in the study area. The burial TP was equivalent to 0.06% of deposited sediments. The buried TP can be proportionate approximately into 15% in the continental shelf (< 200 m), 69% in the continental slope (200-1000 m), and 16% in the slope basin (> 1000 m). The continental shelf (<200 m) region was apparently influenced by wave and tidal processes and prevented from sediment accumulation.
The burial efficiency of TP (PBE) in the GP costal sea is estimated accordingly to PBE (%) = 100 × PBF / (PBF+JP), where PBF is the burial flux of TP and JP is the diffusion flux of TP from porewater. The PBE decreases with the depth of sampling location and the maximum PBE locates on the station of southern canyon (779-1), the station of northern canyon (791-L18) and the station within the canyon (732-38). The PBE(s) are similar to those found in the Nazar&eacute; Canyon, showing a high PBE in coastal and/or canyon regions.
The budget model shows that the major sources of particulate-P are derived from the GP River and the net ecosystem production (NEP) from the euphotic zone of study area. The annual river load and NEP input to the study area are 1.03 × 109 mol P yr-1 and 1.5 × 108 mol P yr-1, respectively. However, annual TP accumulation in the GP costal sea is just 1.48 × 108 mol P yr-1, corresponding to 12.5% of river load and NEP input. In addition, about 80% of GP River loads do not deposit into GP sediments and may be exported out of the study area.
目次 Table of Contents
致謝…………………………………………………………I
摘要…………………………………………………………II
英文摘要……………………………………………………IV
目錄…………………………………………………………VI
圖目錄………………………………………………………IX
表目錄………………………………………………………XI

第一章 前言 ………………………………………………1
1.1 海洋中磷之來源(source)…………………………1
1.2 海洋中磷之匯(sink)………………………………2
1.3 本文研究目的…………………………………………3
第二章、研究區域…………………………………………6
2.1 高屏溪萬大大橋測站與高屏海域……………………6
2.1.1 高屏溪………………………………………………6
2.1.2 高屏峽谷……………………………………………9
2.1.3 高屏&#63955;棚及斜坡……………………………………11
第三章 材料及方法………………………………………12
3.1 採樣時間及位置……………………………………12
3.1.1 高屏溪萬大大橋之測站……………………………12
3.1.2 高屏峽谷及近岸海域之沉積物……………………13
3.2 樣品分析方法………………………………………13
3.2.1樣品前處理…………………………………………13
3.2.1-1 高屏溪萬大橋之水樣……………………………13
3.2.1-2 高屏峽谷及近岸海域之沉積物…………………14
3.2.2 粒徑分析……………………………………………15
3.2.3 溶解態磷之分析……………………………………17
3.2.3-1 溶解態無機磷(DIP)之測定…………………17
3.2.3-2溶解態有機磷(DOP)之測定…………………18
3.2.4 顆粒態磷……………………………………………19
3.2.4-1 顆粒態無機磷(PIP)之測定…………………19
3.2.4-2 顆粒態有機磷(POP)之測定…………………19
3.2.5 顆粒態金屬元素(Al、Fe、Mn)之分析………20
3.3 高屏海域沉積物中磷之進出通量……………………21
3.3.1 高屏溪溶解及顆粒態磷之輸出通量………………21
3.3.2 高屏海域孔隙水中磷之擴散通量…………………22
3.3.3 高屏海域沉積物中磷之埋藏………………………22
3.3.4 磷之有效埋藏效率(phosphorus burial efficiency,PBE)………………………………………23
第四章、結果與討論……………………………………24
4.1 高屏溪流域輸出之通量………………………………24
4.1.1 溶解態與顆粒態磷之時序分布……………………24
4.1.2 高屏溪之輸出通量…………………………………26
4.2 高屏海域淨生產力(NEP)之通量………………36
4.3 高屏海域表層沉積物…………………………………38
4.3.1 磷物種及其他金屬元素之分布……………………38
4.3.2 高屏海域沉積物磷之埋藏通量……………………40
4.4 高屏海域岩心磷分布與地化作用……………………50
4.4.1 高屏峽谷岩心………………………………………54
4.4.2 高屏海域陸坡陸棚之岩心…………………………61
4.4.2-1 高屏峽谷以北(稱北坡)………………………61
4.4.2-2 高屏峽谷以南(稱南坡)………………………70
4.4.2-3 高屏峽谷以外(稱陸坡底部)…………………76
4.5 高屏海域岩心孔隙水中磷的分布及擴散通量………83
4.6.3 磷在高屏海域之埋藏效率及其埋藏量……………92
第五章 結論………………………………………………97
參考文獻…………………………………………………98
參考文獻 References
中文部份:
王有傑,2005,高屏近岸與南海北部海域有機碳代謝之時空變化。國立中山大學海洋地質及化學研究所碩士論文,共148頁。
何晟銘,2004,河川輸出對高屏海域碳及營養鹽生地化作用之影響。國立中山大學海洋地質及化學研究所碩士論文,共118頁。
吳孟麟,2004,高屏海底峽谷與陸棚流場之研究。國立中山大學海洋地質及化學研究所碩士論文,共131頁。
楊心玫,2006,高屏河海溶解態有機物質之光學與分佈特徵。國立中山大學海洋地質及化學研究所碩士論文,共96頁.
楊鈞沂,2001,高屏溪流域陸源物質之剝蝕與傳輸。國立中山大學海洋地質及化學研究所碩士論文,共137頁。.
經濟部水利署,http://www.wra.gov.tw/default.asp
經濟部水資源局,2007,中華民國九十六年台灣水文年報。
英文部份:
Anderson, L.A. and Sarmiento, J.L., 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochemical Cycles, 8: 65-80.
Aspila, K.I., Agemian, H. and Chau, A.S.Y., 1976. A semiautomated method for determination of inorganic, organic and total phosphate in sediments. Analyst, 101: 187-197.
Baker, E.T. and Hickey, B., 1986. Contemporary sedimentation processes in and around an active west coast submarine canyon. Marine geology, 71: 15-34.
Benitez-Nelson, C.R., 2000. The biogeochemical cycling of phosphorus in marine system. Earth-Science Reviews, 51: 109-135.
Berner, R.A., 1980. Early Diagenesis: A theoretical approach, Princeton University Press, Princeton, N.J..
Burdige, D.J., Alperin, M.J., Homstean, J. and Martens, C.S., 1992. The role of benthic fluxes of dissolved organic carbon in oceanic and sedimentary carbon cycling. Geophysical Research Letters, 19: 1851-1854.
Carson, B., Baker, E.T., Hickey, B.M., Nittrouer, C.A., DeMaster, D.J., Thorbjarnarson, K.W., Snyder, G.W., 1986. Modern sediment dispersal and accumulation in Quinault submarine canyon: a summary. Marine Geology, 71: 1-13.
Dadson, S. J., Hovius, N., Chen, H., W., Dade, B., Hsieh, M. L., Willett, S.D. Hu, J. H., Horng, M. J., Chen, M. J., Stark, C. P., Lague, D. and Lin, J. C., 2003. Links between erosion, runoff variability, and seismicity in the Taiwan orogen, Nature, 426: 648-651.
Delaney, M.L., 1998. Phosphorus accmulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles, 12: 563–572.
Duce, R.A., 1986. The impact of nitrogen, phosphorus and iron species on marine biological productivity. In: Buat-Menard, P. (Ed.), The Role of Air-Sea GasExchange in Geochemical Cycling. Reidel Publishing, Boston: 497-529.
Filipelli, G.M. and Delaney, M.L., 1996. Phosphorus geochemistry of equatorial Pacific sediments. Geochimica et cosmochimica acta, 60: 1479–1495.
Follmi, K.B., 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-science reviews, 40: 55–124.
Froelich, P.N., 1988. Kinetic controls of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnology and oceanography, 33: 649-668.
Froelich, P.N., Bender, M.L., Luedtke, N.A., Heath, G.R. and Devries, T., 1982. The marine phosphorus cycle. American Journal of Science, 282: 474–511.
Graham, W.F. and Duce, R.A., 1978. Atmospheric pathways of the phosphorus cycle. Geochim. Geochimica et Cosmochimica Acta, 43: 1195–1208.
Graham, W.F. and Duce, R.A., 1981. Atmospheric input of phosphorus to remote tropical islands. Pacific Scientific, 35: 241–255.
Graham, W.F. and Duce, R.A., 1982. The atmospheric transport of phosphorus to the Western North Atlantic. Atmospheric Environment, 16: 1089–1097.
Huh, C.A., Lin, H.L., Lin, S. and Huang, Y.W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems, 76: 405-416.
Hung, J.J. and Hsu., J.L., 2004. Present state and historical change of trace metals in coastal sediments off southwestern Taiwan. Marine Pollution Bulletin, 49: 986-998.
Ingall, E.D. and Jahnke, R.A., 1994. Evidence for enhances phosphorus regeneration from marine sediments overlain by oxygen-depleted waters. Geochimica et Cosmochimica Acta 58: 2571-2575.
Jahnke, R., 1996. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Global Biogeochemical Cycles, 10: 71-88.
Komar, P.D., 1998. Beach Processes and Sedimentation. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 544.
Liu, J.T. and Lin, H.-L., 2004. Sediment dynamics in a submarine canyon: a case of river-sea interaction. Marine Geology, 207: 55-81.
Liu, J.T., Liu, K.J. and Huang, J.C., 2002. The influence of a submarine canyon on a river sediment dispersal and inner shelf sediment movements: a perspective from grain-size distributions. Marine Geology, 181: 357-386.
Liu, S.M., Zhang, J. and Li, D.J., 2004. Phosphorus cycling in sediments of the Bohai and Yellow Seas. Estuarine, Coastal and Shelf Science, 59: 209-218.
Mach, D.L., Ramirez, A. and Holland, H.D., 1987. Organic phosphorus and carbon in marine sediments. American Journal of Science, 278: 245–273.
Milliman, J.D. and Kao, S.-J., 2005. Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese Rivers. The Journal of geology, 113: 503–516.
Murphy, J. and Riley, J.P., 1962. A modified single solution method for determination of phosphate in natural water. Analytica Chimica Acta, 27: 31-36.
Pai, S.C. and Yang, C.C., 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex Analytica Chimica Acta 229: 115-120.
Redfield, A.C., Ketchum, B.H. and Richard, F.A., 1963. The influence of organisms on the composition of seawater. In: Hill, M.N.(Ed.). The Sea: 26-77.
Resing, J.A., 1997. The chemistry of lava-seawater interactions at the shoreline of Kilauea Volcano, Hawaii. PhD Thesis, University of Hawaii.
Ridal, J.J. and Moore, R.M., 1990. A re-examination of the measurement of dissolved organic phosphorus in seawater. Marine Chemistry, 29: 19-31.
Ruttenberg, K.C., 1993. Reassessment of the oceanic residence time of phosphorus. Chemical geology, 104: 405–409.
Ruttenberg, K.C. and Berner, R.A., 1993. Authigenic apatite formation and burial in sediments from non-upwelling continental margin environments. Geochimica et cosmochimica acta 57: 991-1007.
Schulz, H.D., 2000. Quantification of early diagenesis: dissolved constituents in marine pore water. In: H.D. Schulz and M. Zabel, Editors. Marine Geochemistry, Springer, Berlin 85-128.
Sundby, B., Gobeil, C., Silverberg, N. and Mucci, A., 1992. The phosphorus cycle in coastal marine sediments. Limnology and oceanography, 37: 1129-1145.
Taylor, S.R., 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28: 1273-1285.
Van der Zee, C., Slomp, C.P. and Raaphorst, W.v., 2002. Authigenic P formation and reactive P burial in sediments of the Nazar&eacute; canyon on the Iberian margin ( NE Atlantic ). Marine Geology, 185: 379-392.
Water Resources Bureau, 1998. Hydrological Year Book of Taiwan, Republic of China, 1997. Ministry of Economic Affairs, R.O.C.: 378pp.
Wheat, C.G., Feely, R.A. and Mottl, M.J., 1996. Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the ocean. Geochimica et cosmochimica acta, 60: 3593–3608.
Yamanaka, Y., Watanabe, H., Saitoh, M. and Namba, T., 1991. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature, 352: 516-519.
Yu, H.S., Auster, P.J. and Cooper, R.A., 1993. Surface geology and biology at the head of the Kao-ping canyon off southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 4: 441-455.
Yu, H.S. and Chiang, C.S., 1997. Kaoping shelf: morphology and tectonic siginificance. Journal of Asian Earth Sciences, 15: 9-18.
Yu, H.S., Huang, C.S. and Ku, J.W., 1991. Morphology and possible origin of Kaoping submarinecanyon head off southwest Taiwan. Acta Oceanographica Taiwanica, 27: 40-50.
Wright, L.D. and Nittrouer, C.A., 1995. Dispersal of river sediments in coastal seas : six contrasting cases. Estuaries, 18: 494-508.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code