Responsive image
博碩士論文 etd-0830111-125300 詳細資訊
Title page for etd-0830111-125300
論文名稱
Title
以雙模態氧化鋅薄膜體聲波共振器作為液態感測器之研究
Study of Liquid Sensor Using Dual-Mode ZnO Thin-Film Bulk Acoustic Resonator (TFBAR)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-30
關鍵字
Keywords
c軸傾斜、氧化鋅薄膜、雙模態、薄膜體聲波共振器、感測器
c-axis-tilted, ZnO thin films, Dual-Mode, TFBAR, sensor
統計
Statistics
本論文已被瀏覽 5697 次,被下載 567
The thesis/dissertation has been browsed 5697 times, has been downloaded 567 times.
中文摘要
本論文之研究目的為以c軸傾斜之氧化鋅薄膜製作出雙模態薄膜體聲波共振器(TFBAR),並應用於液態環境之感測。氧化鋅薄膜係採用射頻磁控濺鍍系統成長,並採以室溫離軸方式製作出具有縱波及剪波之雙模態壓電薄膜。薄膜體聲波共振器具有剪模態之原因,是由於氧化鋅薄膜是以c軸傾斜的方式成長。本研究藉由沉積參數的調變,可成長出具有c軸傾斜角23°之氧化鋅薄膜。本研究利用X光繞射儀與掃描式電子顯微鏡對氧化鋅薄膜進行物性分析,以網路分析儀HP8720搭配CASCADE探針座進行TFBAR元件頻率響應的量測。藉由頻率響應分析得知,傾斜角度23°氧化鋅薄膜所製作之TFBAR具有兩種共振模態,其縱波之共振頻率為1.70 GHz,剪波之共振頻率為752.75 MHz。為了探討TFBAR元件之感測特性,本研究進行了液態感測實驗。於液態負載時,TFBAR元件的縱模態之品質因子從545降低至0;而剪模態之品質因子仍保有296,且可辨識其頻率飄移為0.74 MHz。經由計算得知,剪波之液態感測度為13 Hz cm2/μg。
Abstract
A novel liquid sensor is designed and fabricated by using thin film bulk acoustic resonator (TFBAR) devices with c-axis 23°-tilted ZnO films. To fabricate TFBAR devices, the off-axis RF magnetron sputtering method for the growth of piezoelectric ZnO thin films is adopted. The influences of the relative distance and sputtering parameters are investigated. In this report, the piezoelectric ZnO thin films with tilting angle of 23° are set by controlling the deposition parameters. The properties of the c-axis 23°-tilted ZnO thin films are investigated by X-ray diffraction and scanning electron microscopy.
The frequency response is measured using an HP8720 network analyzer with a CASCADE probe station. The TFBAR devices with 23°-tilted ZnO thin films display shear and longitudinal resonant modes at 752.75 MHz and 1.70 GHz, respectively. The mechanical quality factors (QL for longitude mode and QS for shear mode) are thus the important parameters of dual-mode TFBAR devices used in liquid environments. QL decreased from 545 to 0 upon in liquid loading, whereas QS remained almost unchanged at 296 in all environments. Moreover, the sensitivity of the shear mode to liquid loading is calculated to be 13 Hz cm2/μg.
目次 Table of Contents
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖表目錄 ix
第一章 前言 .1
1.1研究背景與動機 1
1.2薄膜體聲波濾波器簡介 2
1.3研究內容 3
第二章 理論分析 4
2.1壓電理論 4
2.1.1壓電效應 5
2.1.2壓電材料 5
2.2氧化鋅結構與特性 6
2.3反應性射頻磁控濺鍍原理 7
2.3.1輝光放電 7
2.3.2磁控濺射 7
2.3.3射頻濺射 8
2.3.4反應性濺射 8
2.4薄膜沉積原理 9
2.4.1沉積現象 9
2.4.2薄膜表面及剖面結構 10
2.5 矽基板蝕刻 10
2.6 Mason等效電路模型 11
2.7體聲波傳遞方式 13
2.8薄膜體聲波共振器 13
2.8.1機電耦合係數kt2 14
2.8.2品質因子Q 14
2.9質量負載效應 15
2.10感測度計算 15
2.11氧電漿清洗 15
2.12自我組裝單分子層 16
2.13酵素連結免疫吸附法 16
第三章 實驗 18
3.1薄膜製程 18
3.1.1電極薄膜製作 18
3.1.2氧化鋅壓電薄膜製作 18
3.2薄膜特性分析 19
3.2.1掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析 19
3.2.2 X光繞射(X-ray Diffraction, XRD)分析 19
3.2.3 原子力顯微鏡(Atomic Force Microscopy, AFM)分析 20
3.3 黃光微影製程 20
3.4薄膜體聲波共振器製作流程 21
3.4.1 RCA基板清洗 21
3.4.2沉積SiNx薄膜 21
3.4.3背部蝕刻窗口與底電極之製作 21
3.4.4壓電層之製作 21
3.4.5頂電極之製作 21
3.4.6濕式蝕刻背部空腔 22
3.5接觸角量測 22
3.6免疫球蛋白E(IgE)之感測 23
3.7 TFBAR元件網路分析儀量測 24
第四章 結果與討論 26
4.1氧化鋅薄膜特性分析 26
4.1.1 X光繞射分析 26
4.1.2原子力顯微鏡分析 26
4.1.3掃描式電子顯微鏡分析 27
4.2 生醫吸附層 28
4.3 液態量測 29
4.3.1接觸角量測 29
4.3.2電漿改善 29
4.3.3感測度及品質因子之計算 29
4.4生醫感測 30
4.4.1 ELISA呈色分析.....................................................................30
4.4.2 頻率響應................................................................................30
第五章 結論 32
參考文獻 33
參考文獻 References
[1] Wei, C.L., Chen, Y.C., Fu, J.L., Kao, K.S., Cheng, D.L. & Cheng, C.C., “UV detection based on a ZnO/ LiNbO layered surface acoustic wave oscillator circuit.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 27, 1343 (2009).
[2] Lin, R. C., Chen, Y. C., Chang, W. T., Cheng, C. C. & Kao, K. S., “Highly sensitive mass sensor using film bulk acoustic resonator.” Sensors and Actuators A: Physical 147, 425-429 (2008).
[3] Huang, I. Y. & Lee, M. C., “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies.” Sensors Actuators B: Chem. 132, 340-348 (2008).
[4] Ruby, R. C., Bradley, P., Oshmyansky, Y., Chien, A. & Larson III, J. D., “Thin film bulk wave acoustic resonators (FBAR) for wireless applications.” Ultrasonics Symposium, 2001 IEEE Ser. 1, IEEE, (2001).
[5] D Yim, M., Kim, D. H., Chai, D. & Yoon, G., “Significant resonance characteristic improvements by combined use of thermal annealing and Co electrode in ZnO-based FBARs.” Electron. Lett. 39, 1638-1640 (2003).
[6] Larson III, J. D. et al., “Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band.” Ultrasonics Symposium, 2000 IEEE Ser. 1, IEEE, (2000).
[7] Zhang, C., Feng, F. & Sui, S., “A new approach to the development of quartz crystal sensors distinguishing between mass loading and liquid damping.” Instrumentation and Measurement, IEEE Transactions on 47, 1234-1238 (1998).
[8] Zhang, Z., Chen, H., Zhong, J., Chen, Y. & Lu, Y., “ZnO nanotip-based QCM biosensors” International Frequency Control Symposium and Exposition, 2006 IEEE, IEEE,( 2006).
[9] 施任青,以石英晶體微天秤法偵測金奈米標識之IgG時訊號之增強,國立中山大學化學研究所碩士論文,(2003)。
[10] Zhang, H. & Kim, E. S., “Micromachined acoustic resonant mass sensor.” Microelectromechanical Systems, Journal of 14, 699-706 (2005).
[11] Lakin, K., Belsick, J., McDonald, J., McCarron, K. & Andrus, C., “Bulk acoustic wave resonators and filters for applications above 2 GHz.” Microwave Symposium Digest, 2002 IEEE MTT-S International Ser. 3, IEEE, (2002).
[12] Kok-Wan, T., Huang, C. L. & Long, W., “Performance characterization of thin AlN films deposited on mo electrode for thin-film bulk acoustic-wave resonators.” Japanese journal of applied physics 43, 5510-5515 (2004).
[13] Kirby, P., Potter, M., Williams, C. & Lim, M., “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators.” Journal of the European Ceramic Society 23, 2689-2692 (2003).
[14] Huang, C. L., Tay, K. W. & Wu, L., “Fabrication and performance analysis of film bulk acoustic wave resonators.” Mater Lett 59, 1012-1016 (2005).
[15] Jakkaraju, R., Henn, G., Shearer, C., Harris, M., Rimmer, N. & Rich, P., “Integrated approach to electrode and AlN depositions for bulk acoustic wave (BAW) devices.” Microelectronic engineering 70, 566-570 (2003).
[16] Lee, S. H., Lee, J. K. & Yoon, K. H., “Growth of highly c-axis textured AlN films on Mo electrodes for film bulk acoustic wave resonators.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, 1 (2003).
[17] Hara, M. &Esashi, M., “RF MEMS and MEMS Packaging” 2nd International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, (2004).
[18] Kim, H.H., Ju, B.K., Lee, Y.H., Lee, S.H., Lee, J.K. & Kim, S.W., “A noble suspended type thin film resonator (STFR) using the SOI technology.” Sensors and Actuators A: Physical 89, 255-258 (2001).
[19] Lanz, R., Carazzetti, P. & Muralt, P., “Surface micromachined BAW resonators based on AlN.” Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE Ser. 1, IEEE, (2002).
[20] Newell, W., “Face-mounted piezoelectric resonators.” Proc IEEE 53, 575-581 (1965).
[21] Lakin, K. M., Kline, G. R. & McCarron, K. T., “Development of miniature filters for wireless applications.” Microwave Theory and Techniques, IEEE Transactions on 43, 2933-2939 (1995).
[22] Kim, S. H., Kim, J. H., Lee, J. K., Lee, S. H. & Yoon, K. H., “Bragg reflector thin film resonator using aluminium nitride deposited by rf sputtering.” Microwave Conference, 2000 Asia-Pacific, IEEE, (2000).
[23] Kok-Wan, T., Huang, C. L. & Long, W., “Influence of piezoelectric film and electrode materials on film bulk acoustic-wave resonator characteristics.” Japanese journal of applied physics 43, 1122-1126 (2004).
[24] Nishihara, T., Yokoyama, T., Miyashita, T. & Satoh, Y., “High performance and miniature thin film bulk acoustic wave filters for 5 GHz.” Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE Ser. 1, IEEE, (2002).
[25] 吳朗,電子陶瓷:壓電陶瓷,全欣資訊,1994。
[26] Su, Q.X., Kirby, P., Komuro, E., Imura, M., Zhang, Q., “Whatmore, R. Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films.” Microwave Theory and Techniques, IEEE Transactions on 49, 769-778 (2001).
[27] Nunes, P., Costa, D., Fortunato, E. & Martins, R., “Performances presented by zinc oxide thin films deposited by rf magnetron sputtering.” Vacuum 64, 293-297 (2002).
[28] Igasaki, Y. & Saito, H., “The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering.” Thin Solid Films 199, 223-230 (1991).
[29] Ma, T. Y. & Shim, D. K., “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films.” Thin Solid Films 410, 8-13 (2002).
[30] 水瑞鐏,氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用,國立成功大學電機工程學系博士論文,(2002)。
[31] 施敏著,張俊彥譯,半導體元件之物理與技術,儒林,pp. 425, 1990。
[32] Berry, R. W., Hall, P. M. & Harris, M. T., “Thin film technology.” D.VAN NOSTRAND CO., INC., PRINCETON, N.J.1968, 706 P (1968).
[33] Vossen, J. L. & Kern, W., Thin film processes II. (1991).
[34] Janczak-Bienk, E., Jensen, H. & Sorensen, G., “The influence of the reactive gas flow on the properties of AIN sputter-deposited films.” Materials Science and Engineering: A 140, 696-701 (1991).
[35] Thornton, J. A., “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings.” Journal of Vacuum Science and Technology 11, 666-670 (1974).
[36] Hara, M., Kuypers, J., Abe, T. & Esashi, M., “Surface micromachined AlN thin film 2 GHz resonator for CMOS integration.” Sensors and Actuators A: Physical 117, 211-216 (2005).
[37] Loebl, H., Metzmacher, C., Milsom, R., Lok, P. & Tuinhout, A., “RF bulk acoustic wave resonators and filters.” Electroceramic-Based MEMS, 115-131 (2005).
[38] Ristic, V. M., Principles of acoustic devices. Wiley, (1983).
[39] Yim, M., Kim, D. H., Chai, D. & Yoon, G., “Significant resonance characteristic improvements by combined use of thermal annealing and Co electrode in ZnO-based FBARs.” Electron. Lett. 39, 1638-1640 (2003).
[40] Bjurstrom, J., Rosen, D., Katardjiev, I., Yanchev, V. M. & Petrov, I., “Dependence of the electromechanical coupling on the degree of orientation of c-textured thin AlN films.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 51, 1347-1353 (2004).
[41] Martin, F., Jan, M.E., Rey-Mermet, S., Belgacem, B. & Su, D., “Cantoni, M.; Muralt, P. Shear mode coupling and tilted grain growth of AlN thin films in BAW resonators.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 53, 1339-1343 (2006).
[42] Link, M., Schreiter, M., Weber, J., Pitzer, D., Primig, R., Assouar, M.B. & Elmazria, O., “C-axis inclined ZnO films deposited by reactive sputtering using an additional blind for shear BAW devices.” Ultrasonics Symposium, 2005 IEEE Ser. 1, IEEE, (2005).
[43] Lee, Y. E., Kim, S. G., Kim, Y. J. & Kim, H. J., “Effect of oblique sputtering on microstructural modification of ZnO thin films.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, 1194-1199 (1997).
[44] Link, M., Schreiter, M., Weber, J., Gabl, R., Pitzer, D., Primig, R., Wersing, W., Assouar, M.B. & Elmazria, O., “C-axis inclined ZnO films for shear-wave transducers deposited by reactive sputtering using an additional blind.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 24, 218 (2006).
[45] 徐茂協,以Mo/SiO2為布拉格反射層製作固態微型諧振器與濾波器之研究,國立中山大學 電機工程學系碩士論文,(2005)。
[46] Zhang, H. & Kim, E. S., “Micromachined acoustic resonant mass sensor.” Microelectromechanical Systems, Journal of 14, 699-706 (2005).
[47] Rosenbaum, J. F., “Bulk acoustic wave theory and devices” Artech House Boston, (1988).
[48] Marlo, M. & Milman, V., “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals.” Physical Review B 62, 2899 (2000).
[49] Gilmer, G. H., Huang, H., de la Rubia, T. D., Dalla Torre, J. & Baumann, F. “Lattice Monte Carlo models of thin film deposition* 1.” Thin Solid Films 365, 189-200 (2000).
[50] Grujicic, M. & Lai, S., “Multi-length scale modeling of chemical vapor deposition of titanium nitride coatings.” J. Mater. Sci. 36, 2937-2953 (2001).
[51] Kajikawa, Y., Noda, S. & Komiyama, H., “Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films.” Chemical Vapor Deposition 8, 99-104 (2002).
[52] Royer, D., & Dieulesaint, E., Elastic Wave in Solids. (2000).
[53] Liu, X. Y. & Bennema, P., “Theoretical consideration of the growth morphology of crystals.” Physical Review B 53, 2314 (1996).
[54] Dong, L. & Srolovitz, D. “Mechanism of texture development in ion-beam-assisted deposition.” Appl. Phys. Lett. 75, 584 (1999).
[55] O'Toole, R. P., Burns, S. G., Bastiaans, G. J. & Porter, M. D. “Thin aluminum nitride film resonators: miniaturized high sensitivity mass sensors.” Anal. Chem. 64, 1289-1294 (1992).
[56] 沈坤生,鐵氟龍/聚酯纖維混編織帶補強環氧脂複材環界面強度與破壞行為之研究,逢甲大學紡織工程研究所碩士論文,(2008)。.
[57] 李明智,運用微機電系統與自我組裝單分子層技術發展一彎曲平板波過敏感測器以偵測人體血清中之免疫球蛋白E,國立中山大學電機系碩士論文,2008。
[58] J. R. Crowther, The ELISA Guidebook, 2001.
[59] A. R. Johnstone, Thorpe in Immunochemistry in Practice, 1996.
[60] 郭益男,反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究,國立中山大學電機工程研究所碩士論文,(2004)。
[61] Lin, R. C., Chen, Y. C. & Kao, K. S. “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators.” Appl. Phys. A 89, 475-479 (2007).
[62] 鄧智文,薄膜體聲波共振器之研製,國立中山大學電機工程研究所碩士論文,(2007)。
[63] Lee, Y. E., Kim, S. G., Kim, Y. J. & Kim, H. J. “Effect of oblique sputtering on microstructural modification of ZnO thin films.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, 1194-1199 (1997).
[64] 吳東庭,雙頻固態微型諧振器與濾波器之頻率調變研究,國立中山大學電機工程系碩士論文,2007
[65] 劉永宏,氮化鋁薄膜塊體聲波共振器分析與研製,國 立 成 功 大 學電 機 工 程 研 究 所碩 士 論 文,2005
[66] Bjurstrom, J., Wingqvist, G. & Katardjiev, I. “Synthesis of textured thin piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 53, 2095-2100 (2006).
[67] Zhang, X., Xu, W., Abbaspour-Tamijani, A. & Chae, J. “Thermal Analysis and Characterization of a High Q Film Bulk Acoustic Resonator (FBAR) as Biosensers in Liquids.” Micro Electro Mechanical Systems, (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code