Responsive image
博碩士論文 etd-0830111-155134 詳細資訊
Title page for etd-0830111-155134
論文名稱
Title
高屏河海系統土壤及沉積物中脂肪族碳氫化合物之分析研究
Analysis of Aliphatic Hydrocarbons in the Sediments and Soils of Gaoping River-sea System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-19
繳交日期
Date of Submission
2011-08-30
關鍵字
Keywords
脂肪族碳氫化合物、高屏河海系統、碳優指數、陸源有機物質、正烷類
Aliphatic Hydrocarbon, Terrigenous Organic Matter, n-Alkanes, CPI, Gaoping River-sea System
統計
Statistics
本論文已被瀏覽 5662 次,被下載 1014
The thesis/dissertation has been browsed 5662 times, has been downloaded 1014 times.
中文摘要
高屏溪為台灣流域面積最大、長度第二的河川,由於此區域降雨量大,加上位於坡度陡峭且颱風及地震頻繁的地帶,因此其流量及輸砂量都相當的高,若與其他的河川相比,高屏溪極高的輸砂量和潮汐主導的沉積物傳輸系統較其他研究區域還更具獨特性。在本研究中,我們收集高屏溪流域上游至下游的土壤及河流沉積物以及位於高屏海域的表層沉積物及沉積物岩心,利用分析其正烷類、有機碳的含量以及分子組成特徵來探討高屏河海系統中陸源有機物質的供應及傳輸歷程、從源到匯的過程中,有機物質所經歷的化學與物理變化以及陸源有機物質在高屏河海系統中的時空分佈模式,並希望能夠進一步討論此區域氣候及沉積環境之變化對於有機物質的傳輸及埋藏會造成何種影響。
結果顯示在高屏河海系統除了土壤的樣品之外,河流沉積物以及高屏海域的表層沉積物在正烷類之組成分佈及階層群集分析(Hierarchical Cluster Analysis, HCA)的結果都與岩石樣品有較高的相似度,其碳優指數(Carbon Preference Index, CPI)均與土壤不同(CPI值>2),呈現出趨近於1的值。而岩心CPI時間序列的結果,也同樣顯示出CPI值趨近於1的特徵,這樣的結果表示,在近150年來,縱使高屏溪的下游區及高屏海域有受到油類污染的情況,但是造成高屏河海系統CPI值趨近於1的主因,並不是來自於石油的汙染,而是由於高屏溪的快速侵蝕所造成(如:颱風、地震),導致其所輸入的有機物受到相對較老的岩石碎屑沉積物稀釋影響,使得高屏溪流域及周遭海域沉積物中的有機化合物與流域四周的土壤相較具有高度降解、成岩作用成熟的特徵。
Abstract
The Gaoping (GP) river which has the largest drainage basin and is the second longest river in Taiwan. Highly erodible sedimentary and metamorphic rocks in the drainage basin, coupled with a steep landscape, humid climate, frequent typhoons and earthquakes, provide favorable conditions for bedrock weathering and soil erosion in the GP drainage basin. Its exceptionally high sediment yield and tidal-dominated dispersal system presents a unique case for comparative study. In this study, we collected sediment and soil samples not only from estuary region but also traced up to upper stream areas of the GP drainage. We analyze the content of n-alkanes in the sediments and soils of GP river-sea system, and utilize compositional patterns to discuss the sources and process of transmission of terrigenous organic matter of GP river-sea system.
Analyzed results show that the average carbon chain distribution shows same pattern for rocks, riverine and seafloor sediments but is different with soil samples. Hierarchical cluster analysis helps us to distinguish differently compositional patterns of n-alkanes. And the riverine, seafloor and rock samples have high similarity, except for soils. The spatial distribution of the carbon preference index (CPI) and temporal distribution of CPI in cores, show that values are all close to ~1, but not for soils (>2). This result indicates that for the past 150 years, lower CPI values not merely from petroleum pollutions, but also due to thermal mature terrestrial organic matter eroded from bedrock caused by tectonic and climatic events, such as typhoons and earthquakes.
目次 Table of Contents
致謝..........................................................................................i
中文摘要.................................................................................ii
英文摘要................................................................................iii
目錄.........................................................................................v
圖目錄..................................................................................viii
表目錄.....................................................................................x
第一章 緒論........................................................................1
1.1 前言.................................................................................1
1.2 研究區域.........................................................................4
 1.2.1 現況概述.................................................................4
 1.2.2 地質分佈及土壤背景...........................................10
 1.2.3 高屏海底峽谷.......................................................13
1.3 文獻回顧......................................................................15
 1.3.1 生物指標...............................................................15
 1.3.2 正烷類...................................................................15
 1.3.3 前人研究...............................................................22
1.4 研究目的......................................................................23
第二章 研究方法.............................................................24
2.1 化學藥品與儀器..........................................................24
 2.1.1 化學藥品...............................................................24
 2.1.2 儀器設備...............................................................24
 2.1.3 器材前處理...........................................................25
2.2 實驗樣品......................................................................25
 2.2.1 採樣時間及地點...................................................25
 2.2.2 樣品前處理...........................................................29
2.3 實驗方法......................................................................29
 2.3.1 超音波萃取...........................................................29
 2.3.2 矽膠管柱層析.......................................................29
 2.3.3 儀器分析...............................................................32
 2.3.4 資料分析...............................................................33
2.4 品保與品管..................................................................35
2.5 總有機碳分析..............................................................36
2.6 階層群集分析..............................................................36
第三章 結果.....................................................................37
3.1 脂肪族碳氫化合物......................................................37
 3.1.1 正烷類碳數分佈...................................................37
 3.1.2 正烷類含量分佈...................................................43
 3.1.3 輕重烴比...............................................................47
 3.1.4 Pristane/Phytane................................................51
 3.1.5 碳優指數...............................................................54
3.2 總有機碳......................................................................57
第四章 討論.....................................................................61
4.1 高屏河海系統正烷類含量分佈特性..........................61
4.2 高屏海域之陸源有機物質來源..................................70
4.3 高屏海域正烷類之時間序列特徵..............................76
第五章 結論.....................................................................81
參考文獻.............................................................................82
附錄 A..................................................................................94
附錄 B...............................................................................104
附錄 C...............................................................................115
附錄 D...............................................................................118
參考文獻 References
中文部分
陳儀清,1997年,台灣西南海外海海床表層沉積現象之研究。國立台灣大學海洋研究所博士論文,共160頁。
劉坤章,1999年,從沈積物粒徑的分布來看高屏溪口近岸海域的沈積物傳輸。國立中山大學海洋地質及化學研究所碩士論文,共99頁。
謝明村,2000年,台灣高雄港區及其鄰近海域沉積物中石油衍生性化合物含量分佈之研究。國立中山大學海洋環境及工程研究所碩士論文,共98頁。
高櫻芬,2001年,高屏溪河口與近岸海域沉積物中石油衍生性有機化合物及重金屬含量分析研究。國立中山大學海洋環境及工程研究所碩士論文,共133頁。
楊鈞沂,2001年,高屏溪流域陸源物質之剝蝕與傳輸。國立中山大學海洋地質及化學研究所碩士論文,共127頁。
賴奕蓁,2003年,高屏溪流域主要及微量元素地球化學:自然風化與人為作用之影響。國立中山大學海洋地質及化學研究所碩士論文,共104頁。
巫思佩,2006年,高屏河海系統多環芳香碳氫化合物之分布及通量研究。國立中山大學海洋環境及工程研究所碩士論文,共120頁。
許鳳心,2008年,台灣西南海域陸源有機碳沉降受鄰近島嶼型河川顆粒傳輸影響之研究。國立台灣大學海洋研究所碩士論文,共70頁。
楊雍華,2010年,利用陸源正烷類參數與不飽和烯酮類指數重建過去十萬年沖繩海槽古海洋記錄。國立中山大學海洋地質及化學研究所碩士論文,共86頁。
高屏溪流域管理委員會,高屏溪流域整治綱要檢討計畫(98-103年)規劃報告,民國98年2月。
台灣地區土壤圖,國立中興大學土壤調查試驗中心,民國77年。
經濟部,高屏溪流域整治綱要計畫,民國91年7月。
經濟部水利署,中華民國九十八年台灣水文年報-第一部份-雨量,民國99年。
經濟部中央地質調查所,http://www.moeacgs.gov.tw。
高屏河-海輸運系統中陸源物質之宿命整合研究,ftp://140.117.94.121/。
英文部分
Amo, M., Minagawa, M., 2003. Sedimentary record of marine and terrigenous organic matter delivery to the Shatsky Rise, western North Pacific, over the last 130 kyr. Organic Geochemistry 34, 1299–1312.
Beer, R.M., Gorsline, D.S., 1971. Distribution, composition, and transport of suspended sediment in Redondo Submarine Canyon and vicinity (California). Marine Geology 10, 153–175.
Brassell, S.C., Guoying, S., Jiamo, F., Eglinton, G., 1988. Biological markers in lacustrine Chinese oil shales. In: Lacustrine Petroleum Source Rocks (A. J. Fleet, K. Kelts, and M. R. Talbot, eds.). Geological Society 40, 299–308.
Bray, E.E., Evens, E.D., 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22, 2–15.
Blumer, M., Mullin, M., Thomas, D.W., 1964. Pristane in zooplankton. Science 140, 794–794.
Brown, W.M., Ritter, J.R., 1971. Sediment transport and turbidity in the Eel River Basin, California, U.S. Geol. Surv. Water Supply Pap. 1986, pp. 70.
Calvert, S.E., Pederson, T., 1992. Organic carbon accumulation and preservation in marine sediments: how important is anoxia? In: Whelan, J., Farrington, J.W. (Eds.), Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments. Columbia University Press, New York, pp. 231– 263.
Canfield, D.E., 1994. Factors influencing organic carbon preservation in marine sediments. Chemical Geology 114, 315–329.
Chappell, J., 1993. Contrasting Holocene sedimentary geologies of lower Daly River, northern Australia, and lower Sepik-Ramu, Papua New Guinea. Sediment. Geology 83, 339–358.
Chen, C.T.A., Liu, J.T., Tsuang, B.J., 2004. Island-based catchment-the Taiwan example. Regional Environmental Change 4, 39–48.
Clark, R.C., Jr., Blumer, M., 1967. Distribution of n-paraffins in marine organisms and sediment. Limnology and Oceanography 17, 79–87.
Cranwell, P.A., 1973. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology 3, 259–265.
Cranwell, P.A., 1984. Lipid geochemistry of sediments from Upton Broad, a small productive lake. Organic Geochemistry 7, 25–37.
Cranwell, P.A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments—II. Organic Geochemistry 11, 513–527.
Dadson, S.J., Hovius, N., Chen, H.G., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D., Lin, J.C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651.
Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., Eglinton, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 272, 216–222.
Drake, D.E., Hatcher, P.G., Keller, G.H., 1978. Suspended paeticulate matter and mud deposition in upper Hudson Submarine Canyon. In: D. J. Stanley and G. Kelling (Editors), Sedimentation in Submarine Canyons, Fans, and Trenches. Dowden, Futchinson and Ross, Stroudburg, Pa., 33–41.
Eglinton, G., Hamilton, R.J., 1963. The distribution of alkanes. In: Swain, T. (Ed.), Chemical Plant Taxonomy. Academic Press, London, pp. 187– 208.
Eglinton, G., Hamilton, R.J., 1967. Leaf Epicuticular Waxes. Science 156, 1322–1335.
Emerson, S., Hedges, J.I., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3, 621–634.
Fang, M.D., Chang, W.K., Lee, C.L., Liu, J.T., 2009. The use of polycyclic aromatic hydrocarbons as a particulate tracer in the water column of Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems 76, 457–467.
Fang, M.D., Hsieh, P.C., Ko, F.C., Baker, J.E., Lee, C.L., 2007. Sources and distribution of polycyclic aromatic hydrocarbons in the sediments of Kaoping River and Submarine Canyon system. Marine Pollution Bulletin 54, 1179–1189.
Farrington, J.W., Tripp, B.W., 1977. Hydrocarbons in western North Atlantic surface sediments. Geochimica et Cosmochimica Acta 41, 1627–1641.
Ficken, K.J., Li, B., Swain, D.L., Eglinton, G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31, 745–749.
Gearing, P., Gearing, J.N., Lytle, T.F., Lytle, J.S., 1976. Hydrocarbons in 60 northeast Gulf of Mexico shelf sediments: a preliminary survey. Geochimica et Cosmochimica Acta 40, 1005–1017.
Giger, W., Schaffner, C., Wakeham, S.G., 1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. Geochimica et Cosmochimica Acta 44, 119–129.
Hammer, O., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontological Electronica 4, pp. 9. http://palaeo-electronica.org/2001_1/past/past.pdf.
Hammer, O., 2002. Palaeontological commubuty and diversity analysis-brief note. http://folk.uio.no/ohammer/past/.
Hedges, J.I., Prahl, F.G., 1993. Early diagenesis: consequences for applications of molecular biomarkers. In: Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry: Principles and Applications. Plenum Press, New York, pp. 237–253.
Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49, 81-115.
Ho, C.S., 1986. An introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan. Ministry of Economic Affairs. pp. 153.
Huh, C.A., Lin, H.L., Lin, S., Huang, Y.W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Gaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76, 405–416.
Hung, J.J., Shy, C.P., 1995. Speciation of dissolved selenium in Kaoping and Erhjen rivers and estuaries, southwestern Taiwan. Estuaries 18, 234–240.
Jacquot, F., Dreau, Y.L., Doumenq, P., Munoz, D., 1999. The origins of hydrocarbons trapped in the lake of berre sediments. Chemosphere 39, 1407–1419.
Jeng, W.L., 1984. Hydrocarbons in marine sediments from off eastern Taiwan. Acta Oceanographica Taiwanica 15, 31–38.
Jeng, W.L., 2006. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry 102, 242–251.
Jeng, W.L., 2007. Aliphatic hydrocarbon concentrations in short sediment cores from the southern Okinawa Trough: Implications for lipid deposition in a complex environment. Continental Shelf Research 27, 2066–2078.
Jeng, W. L., Huh, C.A., 2006. A comparison of sedimentary aliphatic hydrocarbon distribution between the southern Okinawa Trough and a nearby river with high sediment discharge. Estuarine, Coastal and Shelf Science 66, 217–224.
Jeng, W.L., Huh, C.A., 2008. A comparison of sedimentary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough. Continental Shelf Research 28, 582–592.
Kao, S.J., Milliman, J.D., 2008. Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. Journal of Geology 116, 431–448.
Kao, S.J., Shiah, F.K., Wang, C.H., Liu, K.K., 2006. Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off southwestern Taiwan. Continental Shelf Research 26, 2520–2537.
Keizer, P.D., Dale, J., Gordon, D.C., Jr., 1978. Hydrocarbons in surficial sediments from the Scotian Shelf. Geochimica et Cosmochimica Acta 42, 165–172.
Komar, P. D., 1998. Beach Processes and Sedimentation. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 544.
Kuhn, T.K., Krull, E.S., Bowater, A., Grice, K., Gleixner, G., 2010. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry 41, 88–95.
Kvenvolden, K.A., 1966. Evidence for transformations of normal fatty acids in sediments. In: Hobson, G.D. (Ed.), Advances in Organic Geochemistry. pp. 335–366.
Le Dreau, Y., Gilbert, F., Doumenq, P., Asia, L., Bertrand, J.C. Mille, G., 1997. The use of hopane to track in situ variations in petroleum composition in surface sediments. Chemosphere 34, 1663–1672.
Lichtfouse, E., Bardoux, G., Mariotti, A., Balesdent, J., Ballentine, D.C., Macko, S.A., 1997. Molecular, 13C, and 14C evidence for the allochthonous and ancient origin of C16–C18 n-alkanes in modern soils. Geochimica et Cosmochimica Acta 61, 1891–1898.
Lin, X., Zhu, L.P., Wang, Y., Wang, J.B., Xie, M.P., Ju, J.T., Mäusbacher, R., Schwalb, A., 2008. Environmental changes reflected by n-alkanes of lake core in Nam Co on the Tibetan Plateau since 8.4 kaB.P.. Chinese Science Bulletin 53, 3051–3057.
Liu, J.T., Liu, K.J., Huang, J.C., 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology 4, 357–386.
Lyons, W.B., Nezat, C.A., Carey, A.E., Hicks, D.M., 2002. Organic carbon fluxes to the ocean from high-standing islands. Geology 30, 439–442.
Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, 261–289.
Meyers, P.A., Ishiwatari, R., 1993. Lacustrine organic geochemistry--an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, 867–900.
Meyers, P.A., Ishiwatari, R., 1995. Organic matter accumulation records in lake sediments. In: Lerman, A., Imboden, D.M., Gat, J.R. (Eds.), Physics and Chemistry of Lakes. Springer, Berlin, pp. 279–328.
Rielley, G., Collier, R.J., Jones, D.M., Eglinton, G., 1991. The biogeochemistry of Ellesmere Lake, U.K.—I: source correlation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry 17, 901–912.
Schimmelmann, A., Leawn, M.D., Wintsch, R.P., 1999. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochimica et Cosmochimica Acta 63, 3751–3766.
Shieh, S.L., 2000. Users’ Guide for Typhoon Forecasting in the Taiwan Area (VIII), Central Weather Bureau, Taipei.
Syvitski, J.P., Morehead, M.D., 1999. Estimating river-sediment discharge to the ocean: application to the Eel margin, Northern California. Marine Chemistry 154, 13–28.
Ternois, Y., Kawamura, K., Keigwin, L., Ohkouchi, N., Nakatsuka, T., 2001. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years. Geochimica et Cosmochimica Acta 65, 791–802.
Tran, K., Charlie C.Y., Zeng, E.Y., 1997. Organic pollutants in the coastal environment off San Diego, California. 2. Petrogenic and biogenic sources of aliphatic hydrocarbons. Environmental Toxicology and Chemistry 16, 189–195.
Villanueva, J., Grimalt, J.O., Cortijo, E., Vidal, L., Labeyrie, L., 1997. A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle. Geochimica et Cosmochimica Acta 61, 4633–4646.
Wakeham, S.G., Carpenter, R., 1976. Aliphatic hydrocarbons in sediments of Lake Washington. Limnology and Oceanography 21, 711–723.
Walsh, J.P., Nittrouer, C.A., 2003. Contrasting styles of off-shelf sediment accumulation in New Guinea. Marine Chemistry 196, 105–125.
Yu, H.S., Huang, C.S., Ku, J.W., 1991. Morphology and possible origin of the Kaoping submarine canyon head off southwest Taiwan. Acta oceanographica Taiwanica 27, 40–50.
Zhang, J., Yu, H., Jia, G., Chen, F., Liu, Z., 2010. Terrestrial n-alkane signatures in the middle Okinawa Trough during the post-glacial transgression: control by sea level and paleovegetation confounded by offshore transport. Geo-Marine Letters 30, 143–150.
Zhao, M., Dupont, L., Eglinton, G., Teece, M., 2003. n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N.W. Africa over the last 160 kyr. Organic Geochemistry 34, 131–143.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code