Responsive image
博碩士論文 etd-0830111-193857 詳細資訊
Title page for etd-0830111-193857
論文名稱
Title
連續輻射模態在平行位移波導上的應用
Application of continuous radiation modes to the study of offset slab waveguides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-21
繳交日期
Date of Submission
2011-08-30
關鍵字
Keywords
連續輻射模態、直覺、瞬間位移板塊波導、正交及規一化、週期邊界條件及方塊矩陣群
periodic boundary conditions and block-diagonally dominated, orthogonalize, intuitive, normalize, continuous radiation modes, offset dielectric slab waveguide
統計
Statistics
本論文已被瀏覽 5650 次,被下載 1220
The thesis/dissertation has been browsed 5650 times, has been downloaded 1220 times.
中文摘要
本論文主要探討應用連續輻射模態於計算瞬間垂直位移板塊波導的散射的問題。 計算任意多層介電質波導的連續輻射模態問題已經被廣泛地探討。現有文獻多是以雙入射雙反射波的組解來求得多層介電質波導的連續輻射模態。推導方式雖然詳盡,但由於代數繁瑣、不夠直覺,並帶有部分爭議的物理涵義。本論文首先提出了一較接近直覺的方法來求解一任意非對稱多層介電質波導的連續輻射模態。我們將利用簡單、直接的說明,找出任意多層複雜結構下兩組相互獨立的連續輻射模態,並提出一個完整的程序使其正交並規一化。
第二,文章將現有的橫向耦合積分方程式經由特殊的修訂,選擇滿足週期邊界條件的板塊波導輻射模態。由於橫向耦合積分方程式所計算出的模態滿足完整及正交特性,所以可以應用於垂直位移板塊波導電磁場的精算。利用滿足週期邊界條件的波導模態,對於垂直位移介面兩區輻射模態間的重疊積分矩陣將可大大地簡化,因為不同空間頻率輻射模態彼此不相互影響、他們的重疊積分矩陣可形成位於主對角線上的二乘二的方塊矩陣群。遠離主對角線的積分值相對的小了兩個數量級以上。因此、當橫向耦合積分方程式上下邊界推至於無窮遠處時,橫向耦合積分方程式可得到正解的反衍形式,無須進行矩陣的數值反衍。當使用的輻射模態越多時,計算量減少的趨勢將越趨明顯!
Abstract
In this thesis, we study the scattering problem of a vertically offset dielectric slab waveguide, using continuous radiation modes. The calculation of radiation modes of an arbitrarily layered waveguide has been thoroughly investigated in the literature. Most approaches were based on launching two incident waves: one from above and one from below, resulting in two transmitted waves and two reflected waves. Radiation modes were obtained by algebraic adjustments of each incident wave’s amplitude and phase. These radiation modes formed standing waves in both the substrates and superstrates. This implies that walls are located an infinite distance far from the first and the last interfaces. In addition to physical conflicts of simultaneous existence of the incident wave and the walls, the derivation details are complicated and non-intuitive. In our thesis, with a given propagation constant for an arbitrarily layered dielectric waveguide, we propose an intuitive method to obtain two independent radiation mode solutions. We also construct a specific procedure to orthogonalize and normalize these two radiation modes.
The second part of this thesis is focused on applying these radiation modes into a customized coupled transverse mode integral equation formulation (CTMIE), to the study of vertically offset slab waveguides. CTMIE requires two artificial boundaries placed in the substrate and superstrate. We choose to compute discretized radiation modes with the periodic boundary conditions. Under these circumstances, modes correspond to different spatial frequencies and thereby do not inter-couple. This means the matrix of the overlap integral between these two groups of modes (slightly vertically shifted) are block-diagonally dominated. The off-diagonal elements are two orders of magnitude smaller than the diagonal ones. As a result, when the two artificial boundaries are pushed towards infinity in the CTMIE formulation, we may obtain an exact inverse of the Greene’s matrix without relying on numerical inversion.
目次 Table of Contents
第一章 導論 1
1-1 研究背景 1
1-2研究動機 3
1-3 研究主題 6
第二章 傳統方法分析平行層波導垂直位移之探討 8
2-1平行層波導瞬間垂直位移的介紹 9
2-2平行層波導瞬間垂直位移析之文獻探討 10
2-3平行層波導輻射模態分析之文獻探討 11
2-4 文獻間對平行層波導瞬間垂直位移之分析與差異 14
2-5 橫向耦合積分方程式的介紹 19
2-6 CTMIE與PECAM對垂直位移板塊波導的數據分析結果 24
第三章 以一較為直覺方法求解任意多平行層介電質波導輻射模態- 29
3-1建立兩組具相同操作頻率且相互獨立的連續輻射模態 31
3-2重根輻射模態的存在性 33
3-3建立三層對稱波導結構的兩組獨立且連續輻射模態 36
3-4正交且規一化所得到的兩組獨立且連續輻射模態 39
3-5 結論 44
第四章 垂直位移板塊波導之特性分析 45
4-1解垂直位移板塊波導正解基底函數的選擇 46
4-2邊界牆特性與牆距對結構的影響 51
4-3上邊界條件與牆距對點源的理論分析 52
4-4 上下邊界條件對牆距選擇依據的分析 54
4-5相鄰模態因牆距選擇的差異性 57
4-6 數值結果驗證 62
第五章 連續輻射模態在垂直位移板塊波導之應用分析 64
5-1垂直位移板塊波導近似正解型式的推算 65
5-2以修正版橫向耦合積分方程式做修正上的應用 71
5-3 解垂直位移板塊波導正解基底函數的選擇 76
5-4解析解近似根值的估算 78
5-5 解析解近似根值特性的驗證 81
5-6 週期邊界條件Sturm-Liouville問題的探討 82
5-7週期邊界條件Sturm-Liouville在垂直位移波導中重疊積分的驗證 86
第六章 總結與未來工作 105
6-1總結 105
6-2未來工作 108
參考文獻 110
參考文獻 References
[1] M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. Lopez-Amo, I. Moerman, P. Van Daele, and R. G. Baets, “Mode-expanded 1.55 m InP–InGaAsP Fabry–Perot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron., Vol. 8, 1389 –1398 (2002).

[2] T. Hayakawa, S. Asakawa, and Y. Kokubun, “ARROW-B type polarization splitter with Y-branch fabricated by a self alignment process,” J. Lightwave Technol., Vol. 15, 1165–1170 (1997).

[3] J. M. Kubica, “Numerical analysis of InP InGaAsP ARROW waveguides using transfer matrix approach,” J. Lightwave Technol., Vol. 10, 767–771 (1992).

[4] J. C. Grant, J. C. Beal, and N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum Electron., Vol. 30, 1250–1253 (1994).

[5] B. Liu, A. Shakouri, and J. E. Bowers, “Characteristic equations for different ARROW structures,” Opt. Quantum Electron., Vol. 31, 1267–1276 (1999).

[6] W. Huang, R. M. Shubair, A. Nathan, and Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol., Vol. 10, 1015–1022 (1992).

[7] F. Prieto, L. M. Lechuga, A. Calle, A. Llobera, and C. Domínguez, “Optimized silicon antiresonant reflecting optical waveguides for sensing applications,” J. Lightwave Technol., Vol. 19, 75– 83 (2001).

[8] K. Benaissa and A. Nathan, “Silicon anti-resonant reflecting optical waveguides for sensor applications,” Sens. Actuators A., Vol. 65, 33– 44 (1998).

[9] Sheng M. H. and H. W. Chang*, “Accurate first-order leaky-wave analysis of antiresonant reflecting optical waveguides” Applied Optics., Vol. 44, No. 5, 751–764, (2005).

[10] A. K. Chu, I. J. Lan, H. W. Chang, and M. H. Sheng, “Low-loss polyimide Ta2O5 SiO2 hybrid antiresonant reflecting optical waveguides at quasi-antiresonant conditions,” IEEE Photon. Technol. Lett., Vol. 14, 44–46 (2002).

[11] A. K. Chu, H. W. Chang, and M. H. Sheng, “Optical polarizer based on antiresonant reflecting optical waveguide under quasi-antiresonant conditions,” Opt. Commun., Vol. 194, 137–142 (2001).

[12] I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, and M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol., Vol. 14, 798–805 (1996).

[13] Chang H. W., T. L. Wu, “Guiding mode expansion of a TE and TM transverse-mode integral equation for dielectric slab waveguides with an abrupt termination,” J. pt. Soc. Am. A, Vol. 18, 2823–2832, (2001).

[14] Chang H. W., Y. H. Wu, S. M. Lu, W. C. Cheng and M. H. Sheng, “Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation – numerical investigation,” Progress in Electromagnetic Research, Vol. 97, 159–176, (2009).

[15] S. T. Chu, W. Pan, S. Sato, B. E. Little, T. Kaneko, and Y. Kokubun, “ARROW-type vertical coupler filter: design and fabrication,” J. Lightwave Technol., Vol. 17, 652–658 (1999).

[16] Mondal M. and A. Chakrabarty, “Parametric study of waveguide slots and analysis of radiation pattern for the design of waveguide array antenna,” Progress in Electromagnetic Research M, Vol. 4, 93–103, (2008)

[17] T. Sekimoto, S. Ikuta, W. Pan, S. T. Chu, and Y. Kokubun,“Vertical antiresonant reflecting optical waveguide coupler for three - dimensional optical interconnects: optimum design for large tolerance, high coupling efficiency, and short coupling length,” Appl. Opt., Vol. 39, 426–430 (2000).

[18] R. Bernini, S. Campopiano, and L. Zeni, “Design and analysis of an integrated antiresonant reflecting optical waveguide refractive-index sensor,” Appl. Opt., Vol. 41, 70–73 (2002).

[19] Rozzi T. E., “Rigorous Analysis of the Step Discontinuity in a Planar Dielectric Waveguide”, IEEE TMTT, Vol. 26, 738–746, (1978).

[20] Tigelis I. G. and T. G. Theodoropoulos, “Radiation properties of an abruptly terminated five-layer symmetric slab waveguide,” J. Opt. Soc. Am. A, Vol. 14, 1260–1267 (1997).

[21] Tigelis I. G., "Abrupt transition coupling between two-layered symmetric slab waveguides," J. Opt. Soc. Am. A, Vol. 15, 84–91, (1998).

[22] Marcuse D., “Radiation losses of step-tapered waveguides,” Appl. Opt., Vol. 19, 3676–3681, (1981).

[23] T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides— numerical results and analytical expressions,” IEEE J. Quantum Electron., Vol. 28, 1689–1700 (1992).

[24] A. Ishimaru., Electromagnetic Wave Propagation, Radiation Scattering, Academic Press, New Jersey, (1991).

[25] Yariv A., and P. Yeh, Optical Waves in Crystals Propagation and Control of Laser Radiation, 482– 489, John Willy & Sons, New York, (1983).

[26] Yeh P., “Optical Waves in Layered Media,” John Willy & Sons, New York, (1988).

[27] 王上仁, “不連續界面介電質波導輻射損失之研究,” 義守大學電機工程學系碩士論文, (2004).

[28] 林永泰, “光柵耦合面射型雷射輻射損失之分析,” 義守大學電機工程學系碩士論文, (2007).

[29] J. B. Davies, “A least-square boundary residual method for the numerical solution of scattering problems,” IEEE Trans. Microwave Theory Tech., Vol. MTT-21, 99–104, (1973).

[30] K. Morishita, S, Inagaki, and N. Kumagi, “Analysis of discontinuities in dielectric waveguides by means of the least squares boundary residual method,” IEEE Trans. Microwave Theory Tech., Vol. MTT-27, 310–315, (1979).

[31] B. M. A. Rahman, and J. B. Davies, “Analysis of optical waveguide discontinuities,” IEEE J. Lightwave Tech., Vol. LT-6, 52–57, (1988).

[32] T. Wongcharoen, B. M. A. Rahman, and K. T. V. Grattan, “ Electro-optic directional coupler switch characterization,” IEEE J. Lightwave Tech., Vol. 15, 377–382, (1997).

[33] Lee S-L, D. S. L. Mui, and L. A. Coldren, “Explicit Formulas of Normalized Radiation Modes in Multilayer Waveguides,” J. of Lightwave Technology, Vol. 12, 2073–2079, (1994).

[34] Lee S. L., Y. Chung, L. A. Coldern and N. Dagli, “On leaky mode approximations for modal expansion in multilayer open waveguides,” IEEE J. Quantum Electron., Vol. 31, 1790–1802, (1995).

[35] 蔡旻諭, “連續介電質波導輻射模態之分析,” 義守大學碩士論文, (2010).

[36] Chang H. W., W. C. Cheng and S. M. Lu, “Layer-mode transpartent boundary condition for the hybrid FD-FD method,” Progress in Electromagnetic Research, Vol. 94, 175–195, (2009).

[37] Chang H. W., and S. Y. Mu, “Semi-analytical solutions of 2-D homogeneous Helmholtz equation by the method of connected local fields,” Progress in Electromagnetic Research, Vol. 109, 399–424, (2010).

[38] Chang H. W., and S. Y. Mu, “Theoretical foundation for the method of connected local fields,” Progress in Electromagnetic Research, Vol. 114, 67–88, (2011).

[39] Chang H. W., and M. H. Sheng, “Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation-mathematical and numerical formulations,” Progress in Electromagnetic Research, Vol. 78, 329–347, (2008).


[40] Chang H. W., T. L. Wu and M. H. Sheng, “Vectorial modal analysis of dielectric waveguides based on a coupled transverse-mode integral equation. I. Mathematical formulation,” J. Opt. Soc. Am. A ,Vol. 23, 1468–1477, (2006).

[41] Chang H. W., and T. L. Wu, “Vectorial modal analysis of dielectric waveguides based on a coupled transverse-mode integral equation. II. Numerical analysis,” J. Opt. Soc. Am. A, Vol. 23, 1478–1487, (2006).

[42] Burridge R. and H. W. Chang and S. E. Liu, “Exact eigensystems for some matrices arising from discretization,” Linear algebra and its applications., Vol. 23, 999–1006, (2009).

[43] Marcuse D., Theory of Dielectric Waveguides, Academic Press, New York, (1974).

[44] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron., Vol. 6, 150–162 (2000).

[45] R. E. Collin, Field Theory of Guided Waves, pp. 181–184, Institute of Electrical and Electronics Engineering, New York, (1991),

[46] Kendall P.C., D.A. Roberts, P.N. Robson, M.J. Adam, and M.J. Robertson, “Semiconductor laser facet reflectivities using free-space radiation modes, ” IEEE Proc. Vol. 140, 49–55 (1993)

[47] Zieniutycz W., “Hybrid radiation modes of microwave integrated circuit (MIC) lines – theory and application,” Progress in Electromagnetic Research, Vol. 56, 299–322, (2006).

[48] Yang T., S. Song, H. Dong, and R. Ba, “Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and ZnGe2 using 1.55um fiber,’’ Progress in Electromagnetic Research L, Vol. 2, 95-102, (2008).

[49] M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2- Si multiplayer structures,” Appl. Phys. Lett. Vol.49, 13–15 (1986).

[50] J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A, Vol. 1, 742–753 (1984).

[51] James J. B., “Simple formulation of radiation modes in planar multilayer waveguides,” Optical Sciences Center, Vol. 11, 2481–2484, (1994).

[52] N.-J. You, “Application of coupled E H formulation to the design of multiple layer AR-coating for large incident angle,” M.S. thesis, National Sun Yat-sen University, Institute of Electro-optical Engineering, Kaoshiung, Taiwan, (2000).

[53] Pierre B., D. A. M. Khalil and F. S. Andre, “An exact simplified method for the normalization of radiation modes in planar multilayer structures,” Opt. Commun., Vol. 88, 96-100, (1992).

[54] Philippe G., P. Benech, H. Ding and R. Rimet, “A simple method for the determination of orthogonal radiation modes in planar multilayer structures,” Opt. Commun., Vol.108, 234-238, (1994).

[55] Chang H. W., Dielectric WG mode from impedance transformation unpublished note.

[56] Sivaji Ganesh Sista MA 417: Ordinary Differential Equations class note, Department of Mathematics, Indian Institute of Technology, Bombay. (2004)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code