Responsive image
博碩士論文 etd-0830112-120605 詳細資訊
Title page for etd-0830112-120605
論文名稱
Title
以磁控濺鍍法成長氧化亞銅磊晶薄膜及其特性之研究
Study on the Growth and Characterization of Epitaxial Cu2O Thin Films by Magnetron Sputtering
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-10
繳交日期
Date of Submission
2012-08-30
關鍵字
Keywords
氧化亞銅、磊晶、濺鍍法、氧化鎂
R-Al2O3, MgO, sputter, cuprous oxide (Cu2O)
統計
Statistics
本論文已被瀏覽 5700 次,被下載 798
The thesis/dissertation has been browsed 5700 times, has been downloaded 798 times.
中文摘要
氧化亞銅在室溫下是一種半導體材料能隙2.17eV,在太陽能電池和量子元件的應用上具有相當的潛力。本論文之實驗主要在於嘗試成長單晶型的氧化亞銅 (Cuprous Oxide, Cu2O)薄膜,並研究其物理特性。實驗以磁控濺鍍法分別成長磊晶Cu2O於R-面(亦即1012-面)取向的氧化鋁 (Al2O3)與(110)-面取向的MgO基板上。研究發現在這兩種基板上氧化亞銅都可以成長出(110)-面取向的Cu2O 磊晶薄膜,實驗指出兩者存有些許的差異性。成長氧化亞銅有濺鍍法、CVD、PLD和MBE等方法,而濺鍍法是這幾種方法成本較低的。
在實驗初期我們嘗試調控不同的成長參數去成長純化學相或純單晶相的氧化亞銅在不同基板上,最後發現最佳生長條件為DC濺鍍功率100W、工作氣體總壓力15mTorr(氬氣與氧氣比例為16:1)、基板溫度650度。並發現成長時間與晶相的關係。相關物理特性探討由下列方式分析X光繞射儀器、掃瞄式電子顯微鏡(SEM)、物理性質量測系統(PPMS)、光致螢光(PL),本論文將從樣品製備、到X光繞射分析薄膜晶相與品質、SEM薄膜分析表面形貌、PL分析材料能隙與缺陷之間的關係PPMS分析薄膜材料的載子在磁場下的行為作為論文討論的範圍。
Abstract
Cuprous oxide (Cu2O) was first investigated in the 1920s as a semiconductor material with Eg~2.17 eV. It is ideal for applications in solar cells, electrochromic devices, oxygen and humidity sensors because of its high optical absorption coefficient, non-toxic nature, abundant availability and low cost for production. Many groups have tried different ways to grow the cuprous oxide by, for instance, sputtering, CVD, PLD, MBE, and electro-deposition etc. Among them, the sputtering method is probably the most cost-effective and easy to operate.
In this work, the cuprous oxide thin films were grown on R-Al2O3 and (110)-MgO substrates by DC reactive magnetron sputtering. Thin films grown at different temperatures under various oxygen partial pressures were studied by X-ray diffraction (XRD) to test their structural perfections. Samples with the Cu2O on Al2O3(1012) and MgO(110) were studied via measurement of cathodoluminescence(CL) spectroscopy, photoluminescence (PL) spectroscopy, transmission spectroscopy and magneto transport behaviors. The correlation of growth condition and physical properties are discussed.
目次 Table of Contents
論文審定書 I
誌謝 II
摘要 III
ABSTRACT IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 序論 1
1-1前言 1
1-2文獻回顧 2
1-2-1氧化亞銅(Cu2O)發展進程 2
1-2-2氧化亞銅(Cu2O)性質 3
1-2-3氧化亞銅(Cu2O)的成長 7
1-2-4氧化亞銅(Cu2O)的分析 10
1-3動機與目的 11
1-4 論文架構 12
第二章 實驗儀器及理論基礎 13
2-1濺鍍(SPUTTERING)系統及原理[58] 13
2-1-1 濺鍍系統[59] 13
2-1-2 濺鍍原理 14
2-2 X光繞射儀及原理 16
2-2-1 X-ray由來及應用 16
2-2-2 X-ray 特性及原理 16
2-2-3 X-ray繞射儀簡介及掃描模式 17
2-3 掃描式電子顯微鏡(SCANNING ELECTRON MICROSCOPY, SEM) 23
2-3-1 SEM由來及應用[65] 23
2-3-2 SEM原理簡介 23
2-3-3 CL原理簡介 24
2-4 光致螢光(PHOTOLUMINESCENCE, PL)[66] 25
2-4物理性質量測系統(PPMS) 26
2-4-1 PPMS簡介 26
2-4-2 接觸電阻量測 26
2-4-3霍爾棒(Hall Bar)量測 27
第三章 實驗設計與流程 29
3-1實驗設計 29
3-2成長流程 30
3-1-1基板清洗與前置作業 30
3-2-2薄膜的成長 31
3-2-3薄膜成長參數 31
第四章 實驗結果與分析 34
4-1 XRD分析結果 37
4-1-1 2θ/ω模式 37
4-1-2 GIXRD模式 40
4-1-3 phi scan模式 41
4-1-4 rocking curve模式 44
4-1-5 pole figure模式 45
4-1-5 RSM 46
4-2 SEM分析結果 50
4-3 CL&PL分析結果 53
4-3-1 PL分析結果 53
4-3-2 CL分析結果(CL fitting) 53
4-4 穿透光譜分析結果 55
4-5 HALL量測結果 57
第五章 結論 59
參考文獻 60
附錄A 65
SPUTTER製程步驟 65
附錄B 70
XRD操作(以磊晶薄膜為準) 70
附錄C 76
C-1 XRD量測目的 76
C-2晶格匹配度計算 77
C-3 TLM計算 78
C-4 HALL載子濃度與遷移率計算 79
C-5 KRAMERS–KRONIG RELATIONS計算 81
C-6 GIXRD修正計算 82
參考文獻 References
1. 李雯雯, 薄膜太陽能電池發展趨勢分析. 2008.
2. Grondahl, L.O., The Copper-Cuprous-Oxide Rectifier and Photoelectric Cell. Reviews of Modern Physics, 1933. 5(2): p. 141-168.
3. Olsen, L.C., F.W. Addis, and W. Miller, Experimental And Theoretical-studies of Cu2O Solar-Cell. Solar Cells, 1982. 7(3): p. 247-279.
4. Rai, B.P., Cu2O solar cells: A review. Solar Cells, 1988. 25(3): p. 265-272.
5. Ghosh, S., D.K. Avasthi, and P. Shah, Deposition of thin films of different oxides of copper by RF rective sputtering and their characterization. Vacuum, 2000. 57: p. 377-385.
6. Jeong, S.H., Thin zinc oxide and cuprous oxide films for photovoltaic applications 2010: p. 28.
7. Zhang, H., et al., Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology, 2005. 16(2): p. 267-72.
8. Rakhshani, A.E., Preparation, Characteristics And Photovoltaic Properties of Cuprous-Oxide - A Review. Solid-State Electronics, 1986. 29(1): p. 7-17.
9. Poizot, P., et al., Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature, 2000. 407(6803): p. 496-499.
10. Li, X.D., et al., Nanoindentation of Cu2O nanocubes. Nano Letters, 2004. 4(10): p. 1903-1907.
11. JIANG Zhi-Liang, Z.Y.-L., LIANG Ai-Hui, WEI Li-Li, WANG Su-Mei, Immunonanogold Catalytic-Cu2O Particle Resonance Scattering Spectral Determination of Trace α-Fetoprotein of Trace α-Fetoprotein. 2009. 30(6): p. 1109-1115.
12. 林冠宇, 電化學沈積之氧化亞銅其結晶結構及光電化學性質. 2005: p. 2-3.
13. Ramı́rez-Ortiz, J., et al., A catalytic application of Cu2O and CuO films deposited over fiberglass. Applied Surface Science, 2001. 174(3–4): p. 177-184.
14. Bohannan, E.W., M.G. Shumsky, and J.A. Switzer, Epitaxial electrodeposition of copper(I) oxide on single-crystal gold(100). Chemistry of Materials, 1999. 11(9): p. 2289-2291.
15. Yin, Z.G., et al., Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering. Applied Physics Letters, 2005. 86(6): p. 061901.
16. B.Balamurugan and B.R.Mehta, Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films, 2001. 396: p. 90-96.
17. Power diffraction File (PDF) Cu、CuO、Cu2O. 1997.
18. Capizzi, P.M., Defects and Doping in Cu2O. 2009.
19. Copper(II) oxide. website: en.wikipedia.org/wiki/Copper%28II%29_oxide.
20. Liquid crystal display device having particular constructed sapphire substrate, United States Patent 6642989
21. Surfaces and adsorption Modeling the surface - The slab model.
22. Schmidt-Whitley, R.D. and M. Martinez-Clemente, Growth and Microstructural Control of Single crystal Cuprous Oxide Cu2O Journal of Crystal Growth, 1974. 23: p. 113-120.
23. Oba, F., et al., Epitaxial Growth of Cuprous Oxide Electrodeposited onto Semiconductor and Metal Substrates. Journal of the American Ceramic Society, 2005. 88(2): p. 253-270.
24. Hua, L. and S.N. Tan, Applications of a versatile sol-gel derived renewable electrode for capillary electrophoresis. Fresenius' Journal of Analytical Chemistry, 2000. 367(8): p. 697-700.
25. Chen, A., et al., Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum, 2009. 83(6): p. 927-930.
26. Itoh, T. and K. Maki, Growth process of CuO(111) and Cu2O(001) thin films on MgO(001) substrate under metal-mode condition by reactive dc-magnetron sputtering. Vacuum, 2007. 81(9): p. 1068-1076.
27. Deuermeier, J., et al., Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide. Journal of Applied Physics, 2011. 109(11): p. 113704.
28. Park, J.-Y., et al., Spectroscopic and Morphological Investigation of Copper Oxide Thin Films Prepared by Magnetron Sputtering at Various Oxygen Ratios. Bulletin of the Korean Chemical Society, 2011. 32(9): p. 3395-3399.
29. 吳尚宣, 以反應性濺鍍成長P型氧化亞銅薄膜之特性. 2008.
30. 秦玉玲, 以反應性磁控濺鍍沈積氧化亞銅薄膜之結構與光電性質研究 2006.
31. Jayatissa, A.H., P. Samarasekara, and G. Kun, Methane gas sensor application of cuprous oxide synthesized by thermal oxidation. physica status solidi (a), 2009. 206(2): p. 332-337.
32. Kawaguchi, K., et al., Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of Cu/O+. Journal of Crystal Growth, 1994. 143(3–4): p. 221-226.
33. Serin, N., et al., Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semiconductor Science and Technology, 2005. 20(5): p. 398-401.
34. P.R. Markworth, et al., Coherent island formation of Cu2O films grown by chemical vapor deposition on MgO(110). J. Mater. Res., 2001. 16(8).
35. Reddy, A., S. Uthanna, and P. Reddy, Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures. Applied Surface Science, 2007. 253(12): p. 5287-5292.
36. Sivasankar Reddy, A., et al., Effect of substrate temperature on the physical properties of dc magnetron sputtered Cu2O films. physica status solidi (a), 2006. 203(5): p. 844-853.
37. J.R. Wu, C. W. Wuand, and M.J. Chiang, Deposition ofnanocrystalline cuprous oxide films for solar cells application. IEEE, 2007: p. 209-212.
38. Reddy, A.S., et al., Effect of sputtering power on the physical properties of dc magnetron sputtered copper oxide thin films. Materials Chemistry and Physics, 2008. 110(2-3): p. 397-401.
39. Lee, Y.S., et al., Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering. Applied Physics Letters, 2011. 98(19): p. 192115.
40. V. F. Drobny and D.L. Pulfrey, Properties Of Reactively-Sputtered Copper Oxide Thin Films. Thin Solid Films, 1979. 61: p. 89-98.
41. A. Parretta, M. K. Jayaraj, and A.D. Nocera, Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering. physica (a), 1996. 155(399).
42. Shogo Ishizuka, Takahiro Maruyama, and K. Akimoto, Thin-Film Deposition of Cu2O by Reactive Radio-Frequency Magnetron Sputtering. Jpn. J. Appl. Phys., 2000. 39: p. 786-788.
43. Reddy, M.H., et al., Structural, electrical and optical behaviour of rf magnetron sputtered cuprous oxide films. Indian Journal of Pure and Applied Physics, 2010. 48: p. 420-424.
44. Kale, S.N., et al., Magnetism in cobalt-doped Cu2O thin films without and with Al, V, or Zn codopants. Applied Physics Letters, 2003. 82(13): p. 2100.
45. Serin, T., et al., Current flow mechanism in Cu2O/p-Si heterojunction prepared by chemical method. Journal of Physics D: Applied Physics, 2009. 42(22): p. 225108.
46. Dean J. Miller, Jeffrey D. Hettinger, and R.P. Chiarello, Epitaxial growth of Cu2O films on MgO by sputtering. J. Mater. Res, 1992. 7(10): p. 2828-2832.
47. Paul R. Markworth and R.P.H. Chang, Epitaxial stabilization of orthorhombic cuprous oxide films. J. Mater. Res., 2000. 16(4): p. 914-921.
48. Kobayashi, H., T. Nakamura, and N. Takahashi, Preparation of Cu2O films on MgO (110) substrate by means of halide chemical vapor deposition under atmospheric pressure. Materials Chemistry and Physics, 2007. 106(2-3): p. 292-295.
49. Petroff, Y., P.Y. Yu, and Y.R. Shen, Study of photoluminescence in Cu2O. Physical Review B, 1975. 12(6): p. 2488-2495.
50. Takayuki ITO, T.M., Detailed examination of relaxation processes of excitons in photoluminescence spectra of Cu2O. Journal of the Physical Society of Japan, 1997. 66.
51. Angello, S.J., Hall Effect and Conductivity of Cuprous Oxide. Physical Review, 1942. 62(7-8): p. 371-377.
52. David O. Scanlon and GraemeW.Watson, Undoped n-Type Cu2O: Fact or Fiction? The Journal of Physical Chemistry Letters, 2010.
53. Gershon, T., et al., Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer. Solar Energy Materials and Solar Cells, 2012. 96: p. 148-154.
54. Lv, P., et al., I–V characteristics of ZnO/Cu2O thin film n–i–p heterojunction. Physica B: Condensed Matter, 2011. 406(6-7): p. 1253-1257.
55. Darvish, D.S. and H.A. Atwater, Epitaxial growth of Cu2O and ZnO/Cu2O thin films on MgO by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2011. 319(1): p. 39-43.
56. Dong, C.J., et al., Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy. Journal of Applied Physics, 2011. 110(7): p. 073712.
57. Adriana Paracchino, V.L., Kevin Sivula, Michael Grätzel and Elijah Thimsen, Highly active oxide photocathode for photoelectrochemicalwater reduction. NATURE MATERIALS, 2011. 10: p. 456-461.
58. Class, D.W.H., The Book Of Basics, ed. 2: Materials Research Corporation.
59. 羅吉宗, 薄膜科技與應用. 全華圖書, 2009: p. 1-100.
60. 蘇青森, 真空技術. 東華書局, 2004: p. 32.
61. 曾國禎, X光機應用與輻射防護.
62. Bede Scientific Instruments Ltd. .
63. Jens Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics2001: Wiley.
64. Speakman, S.A., Introduction to High Resolution X-Ray Diffraction of Epitaxial Thin Films. p. 32.
65. 羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹 – SEM.
66. 謝嘉民, et al., 光激發螢光量測的原理、架構及應用. 奈米通訊. 12(2): p. 28-39.
67. Schroder, D.K., Semicoductor Material and Device Charaterization, ed. 32006, Wiley.
68. Kittel, C., Introdution to Solid State Physics, 2005.
69. Saxena, A.K., Solid State Physics: An Introucticion to State Electronic Devices, 2010.
70. Takayuki ITO, Takahiro Kawashima, and H. Yamaguchi, Optical Properties of Cu2O Studied by Spectroscopic Ellipsometry. Journal of the Physical Society of Japan, 1998. 67(6): p. 2125-2131.
71. Park, J.-W., et al., Microstructure, optical property, and electronic band structure of cuprous oxide thin films. Journal of Applied Physics, 2011. 110(10): p. 103503.
72. Jana, S. and P.K. Biswas, Optical characterization of in-situ generated Cu2O excitons in solution derived nano-zirconia film matrix. Materials Letters, 1997. 32(4): p. 263-270.
73. Sun, Y., G.K.L. Wong, and J.B. Ketterson, Study of the 1s orthoexciton luminescence in Cu2O under two-photon excitation. Journal of Luminescence, 2004. 110(3): p. 125-134.
74. Ch. Müller, S.G., et al., Optical properties of cuprous oxide. 2010: p. 54-55.
75. Garuthara, R. and W. Siripala, Photoluminescence characterization of polycrystalline n-type Cu2O films. Journal of Luminescence, 2006. 121(1): p. 173-178.
76. Brandt, R.E., Developing Cuprous Oxide Thin Film Characterization Techniques to Illuminate Efficiency-Limiting Mechanisms in Photovoltaic Applications 2011: p. 52-54.
77. O. Madelung, U.R., M. Schulz, Landolt-Börnstein - Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology. Vol. 41C. 1998: Springer-Verlag.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code