Responsive image
博碩士論文 etd-0830112-143255 詳細資訊
Title page for etd-0830112-143255
論文名稱
Title
探討Oct4、Sox2、Nanog 與Lin28 的蛋白質表現與侵襲性乳腺癌患者預後之關聯性
Association of Oct4, Sox2, Nanog and Lin28 Protein Expression Levels with the Prognosis of Invasive Mammary Ductal Carcinoma Patients
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-27
繳交日期
Date of Submission
2012-08-30
關鍵字
Keywords
組織晶片、重新引導因子、侵襲性乳腺癌、誘導多潛能性幹細胞
reprogramming factor, induce induced pluripotent stem cell, tissue microarray, Invasive ductal carcinoma
統計
Statistics
本論文已被瀏覽 5653 次,被下載 413
The thesis/dissertation has been browsed 5653 times, has been downloaded 413 times.
中文摘要
乳癌為台灣女性最好發的癌症,而侵襲性乳腺癌是最常見的乳癌。越來越多的研究顯示癌症幹細胞與腫瘤發生、腫瘤進展及抗藥性有關。而癌症幹細胞的形成與誘導多潛能性幹細胞的重新引導因子:Octamer-binding Protein 4 (Oct4) 、Sex-determining Region Y (SRY)-related Box 2 (Sox2) 、 Nanog 及Lin28的表現有關。本研究目的在於探討能誘導多潛能性幹細胞之重新引導因子:Oct4、Sox2、Nanog、Lin28的蛋白質表現量與侵襲性乳腺癌發生的關係以及與這些癌患的臨床病理特性及其預後的相關性。本研究將309個侵襲性乳腺癌與20個乳房纖維化囊腫病人的石蠟包埋檢體製作成組織晶片,並利用組織免疫染色法檢測Oct4、Sox2、Nanog、Lin28蛋白質表現量於正常乳腺組織、腫瘤鄰近正常乳腺組織、乳管原位癌、侵襲性乳腺癌及癌復發組織之表現量。我們的組織免疫染色法檢測結果顯示,Sox2 與Lin28表現於半數癌患的腫瘤組織中,陽性率分別為49.6%和49.7%,而Oct4和Nanog較少表現,陽性率分別為13.5%和24.7%。這4個蛋白質表現量彼此呈正相關,此外,這4個蛋白質在腫瘤鄰近正常乳腺組織的表現量比乳房纖維化囊腫病人的正常乳腺組織來的高。然而比較侵襲性乳腺癌患者的不同組織如:腫瘤鄰近正常乳腺、乳管原位癌、侵襲性乳腺癌與再發組織的4個蛋白質表現量,隨著腫瘤的發生與進展其蛋白質表現量逐漸下降。但比較侵襲性乳腺癌與再發組織中此4個蛋白質的表現量並無明顯差異。此4個蛋白質的表現量高與兩個好的臨床病理特性及一個乳癌生物標記有關,例如:細胞核表現Sox2與Lin28在病理分期第一期的病人的腫瘤組織中表現量較高;細胞核表現此4個蛋白質在細胞分化良好或中等的病人中的表現量較高;Sox2蛋白質在雌激素受體陽性的病人中表現量較高。然而,此4個蛋白質表現量與侵襲性乳腺癌患者之存活有任何關係。綜合而論,在侵襲性乳腺癌腫瘤的形成當中,這4個蛋白質在腫瘤發生中可能扮演重要的角色,但在腫瘤進展中的角色就不那麼重要。
Abstract
Breast cancer is the most common cancer in Taiwanese women and the invasive ductal carcinoma (IDC) is the most common type. Increasing evidence shows that cancer stem cells (CSCs) have been implicated in tumorigenesis, tumor progression, and drug-resistance. In addition, four reprogramming factors (Octamer-binding Protein 4 (Oct4), Sex-determining Region Y (SRY)-related Box 2 (Sox2), Nanog and Lin28) employed to induce induced pluripotent stem (iPS) cells are associated with CSCs formation. The purpose of this study was to investigate the relationship of the protein expression levels of the reprogramming factors (Oct4, Sox2, Nanog and Lin28) with the tumorigenesis, clinicopathologic outcomes and prognosis of breast IDC patients. Immunohistochemistry (IHC) assay of tissue microarrays, made by 309 IDC and 20 breast fibrosis paraffin embedded samples, were used to examine the protein expression levels of Oct4, Sox2, Nanog and Lin28 in normal mammary ductal tissues, tumor adjacent normal mammary ductal tissues, ductal carcinoma in situ (DCIS), IDC and recurrence tissues. Our IHC results showed that Sox2 and Lin28 were expressed in half of breast IDC patients’ tumor tissue (49.6% and 49.7%, respectively), but Oct4 and Nanog are less expressed (13.5% and 24.7%, respectively). The protein expression levels of the four proteins were positively correlated with each other. In addition, the expression levels of the four proteins were upregulated in tumor adjacent normal tissue as compared to breast fibrosis pateints’ normal mammary ductal tissue. To compare the expression levels of the four proteins in different tissues; such as tumor adjacent normal, DCIS, IDC and recurrence tissues, the expression levels of the four protiens gradually decreased when tumor developed and progressed. However, their expression levels were comparable between IDC and recurrence tissues. Additionally, the high expression levels of four proteins were high in two good clinicopathological characteristics and a biomarker of breast cancer; such as nuclear Sox2 and Lin28 in those with pathology stage I; nucleus expression of the four proteins in those with well and moderate cell differentiation; and Sox2 in those with positive estrogen receptor. However, the four proteins’ expression levels were not correlated with IDC patients’ survival. In conclusion, the reprogramming factors: Oct4, Sox2, Nanog and Lin28 may play an important role in tumorigenesis of breast IDC, but their impacts on tumor progression were quite small.
目次 Table of Contents
Abbreviations ------------------------------------------------------------4
Abstract in Chinese ----------------------------------------------------6
Abstract in English -----------------------------------------------------8
Contents ----------------------------------------------------------------10
Introduction
1. Epidemiology and molecular subtypes of breast cancer --------------------------------------------------------------------12
2. Breast Gland Development and stem cells ------------------------------------------------------------------------------13
3. Stem cells, cancer stem cells (CSCs) and induced pluripotent stem (iPS) cells---------------------------------14
Octamer-binding Protein 4 (Oct4) ---------------------15
Sex-determining Region Y (SRY)-related Box 2(Sox2) ----------------------16
Nanog--------------------------------------------------------------------17
Lin28----------------------------------------------------------------------18
Specific Aims ----------------------------------------------------------20
Subjects and Methods ----------------------------------------------21
Results
1. Breast cancer intrinsic subtypes and clinicopathological parameters-----------------------------------27
2. Expression levels of reprogramming factors in normal ductal epithelial tissue,tumor-adjacent normal ductal epithelial tissue, tumor and recurrence tissue ---------------28
3. Association between the expression level of Oct4 in tumor and demographic,clinicopathological parameters and survival -------------------------------------------------------------31
4. Association between the expression level of Sox2 and demographic, clinicopathological parameters and survival ------------------------------------------------------------------------------32
5. Association between the expression level of Nanog and demographic, clinicopathological parameters and survival ------------------------------------------------------------------------------33
6. Association between the expression level of Nanog and demographic, clinicopathological parameters and survival ------------------------------------------------------------------------------34
7. Association of DSS and DFS between reprogramming factors’ protein expression in tumor and breast cancer intrinsic subtypes and adjuvant therapy status -----------------------------------------------------------------------------35
Discussion -------------------------------------------------------------36
Conclusioin ------------------------------------------------------------39
References -------------------------------------------------------------41
Tables --------------------------------------------------------------------49
Figures ------------------------------------------------------------------70
Index ----------------------------------------------------------------------81
參考文獻 References
(Cancer Registry annual Report, Department of Health 2007).
(Vital Statistics, Department of Health 2010).
Alatzoglou, K.S., Kelberman, D., and Dattani, M.T. (2009). The role of SOX proteins in normal pituitary development. J Endocrinol 200, 245-258.
Ali, H.R., Dawson, S.J., Blows, F.M., Provenzano, E., Pharoah, P.D., and Caldas, C. (2011). Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 13, R118.
Baltus, G.A., Kowalski, M.P., Zhai, H., Tutter, A.V., Quinn, D., Wall, D., and Kadam, S. (2009). Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 27, 2175-2184.
Beltran, A.S., Rivenbark, A.G., Richardson, B.T., Yuan, X., Quian, H., Hunt, J.P., Zimmerman, E., Graves, L.M., and Blancafort, P. (2011). Generation of tumor-initiating cells by exogenous delivery of OCT4 transcription factor. Breast Cancer Res 13, R94.
Ben-David, U., and Benvenisty, N. (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11, 268-277.
Blows, F.M., Driver, K.E., Schmidt, M.K., Broeks, A., van Leeuwen, F.E., Wesseling, J., Cheang, M.C., Gelmon, K., Nielsen, T.O., Blomqvist, C., et al. (2010). Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7, e1000279.
Bosnali, M., Munst, B., Thier, M., and Edenhofer, F. (2009). Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming. Cell Mol Life Sci 66, 3403-3420.
Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947-956.
Boyerinas, B., Park, S.M., Hau, A., Murmann, A.E., and Peter, M.E. (2010). The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 17, F19-36.
Calza, S., Hall, P., Auer, G., Bjohle, J., Klaar, S., Kronenwett, U., Liu, E.T., Miller, L., Ploner, A., Smeds, J., et al. (2006). Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res 8, R34.
Cantz, T., Key, G., Bleidissel, M., Gentile, L., Han, D.W., Brenne, A., and Scholer, H.R. (2008). Absence of OCT4 expression in somatic tumor cell lines. Stem Cells 26, 692-697.
Carey, L.A., Perou, C.M., Livasy, C.A., Dressler, L.G., Cowan, D., Conway, K., Karaca, G., Troester, M.A., Tse, C.K., Edmiston, S., et al. (2006). Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492-2502.
Cauffman, G., Liebaers, I., Van Steirteghem, A., and Van de Velde, H. (2006). POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 24, 2685-2691.
Cauffman, G., Van de Velde, H., Liebaers, I., and Van Steirteghem, A. (2005). Oct-4 mRNA and protein expression during human preimplantation development. Mol Hum Reprod 11, 173-181.
Chambers, I., and Tomlinson, S.R. (2009). The transcriptional foundation of pluripotency. Development 136, 2311-2322.
Chan, Y.S., Yang, L., and Ng, H.H. (2011). Transcriptional regulatory networks in embryonic stem cells. Prog Drug Res 67, 239-252.
Chang, T.C., Yu, D., Lee, Y.S., Wentzel, E.A., Arking, D.E., West, K.M., Dang, C.V., Thomas-Tikhonenko, A., and Mendell, J.T. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40, 43-50.
Charafe-Jauffret, E., Monville, F., Ginestier, C., Dontu, G., Birnbaum, D., and Wicha, M.S. (2008). Cancer Stem Cells in Breast: Current Opinion and Future Challenges. Pathobiology 75, 75-84.
Cheang, M.C., Chia, S.K., Voduc, D., Gao, D., Leung, S., Snider, J., Watson, M., Davies, S., Bernard, P.S., Parker, J.S., et al. (2009). Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101, 736-750.
Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., Sun, L., Yang, X., Wang, Y., Zhang, Y., et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 283, 17969-17978.
Cox, J.L., Mallanna, S.K., Luo, X., and Rizzino, A. (2010). Sox2 uses multiple domains to associate with proteins present in Sox2-protein complexes. PLoS ONE 5, e15486.
Daley, G.Q. (2008). Common themes of dedifferentiation in somatic cell reprogramming and cancer. Cold Spring Harb Symp Quant Biol 73, 171-174.
Dean, M., Fojo, T., and Bates, S. (2005). Tumour stem cells and drug resistance. Nat Rev Cancer 5, 275-284.
Dekker, T.J., Borg, S.T., Hooijer, G.K., Meijer, S.L., Wesseling, J., Boers, J.E., Schuuring, E., Bart, J., van Gorp, J., Mesker, W.E., et al. (2012). Determining sensitivity and specificity of HER2 testing in breast cancer using a tissue micro-array approach. Breast Cancer Res 14, R93.
Dontu, G., Al-Hajj, M., Abdallah, W.M., Clarke, M.F., and Wicha, M.S. (2003). Stem cells in normal breast development and breast cancer. Cell Prolif 36 Suppl 1, 59-72.
Dontu, G., El-Ashry, D., and Wicha, M.S. (2004a). Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15, 193-197.
Dontu, G., El-Ashry, D., and Wicha, M.S. (2004b). Breast cancer, stem/progenitor cells and the estrogen receptor. Trends in Endocrinology & Metabolism 15, 193-197.
Du, L., Yang, Y., Xiao, X., Wang, C., Zhang, X., Wang, L., Li, W., Zheng, G., Wang, S., and Dong, Z. (2011). Sox2 nuclear expression is closely associated with poor prognosis in patients with histologically node-negative oral tongue squamous cell carcinoma. Oral Oncol 47, 709-713.
Fabian, A., Barok, M., Vereb, G., and Szollosi, J. (2009). Die hard: are cancer stem cells the Bruce Willises of tumor biology? Cytometry A 75, 67-74.
Feng, C., Neumeister, V., Ma, W., Xu, J., Lu, L., Bordeaux, J., Maihle, N.J., Rimm, D.L., and Huang, Y. (2012). Lin28 regulates HER2 and promotes malignancy through multiple mechanisms. Cell Cycle 11, 2486-2494.
Ge, N., Lin, H.X., Xiao, X.S., Guo, L., Xu, H.M., Wang, X., Jin, T., Cai, X.Y., Liang, Y., Hu, W.H., et al. (2010). Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma. J Transl Med 8, 94.
Graziano, A., d'Aquino, R., Tirino, V., Desiderio, V., Rossi, A., and Pirozzi, G. (2008). The stem cell hypothesis in head and neck cancer. J Cell Biochem 103, 408-412.
Groner, B., Vafaizadeh, V., Brill, B., and Klemmt, P. (2009). Mammary epithelial and breast cancer stem cells. Eur J Cancer 45 Suppl 1, 186-193.
Harvey, J.M., Clark, G.M., Osborne, C.K., and Allred, D.C. (1999). Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17, 1474-1481.
Hatsell, S., and Frost, A.R. (2007). Hedgehog Signaling in Mammary Gland Development and Breast Cancer. Journal of Mammary Gland Biology and Neoplasia 12, 163-173.
Heo, I., Joo, C., Cho, J., Ha, M., Han, J., and Kim, V.N. (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32, 276-284.
Howard, B.A., and Gusterson, B.A. (2000). Human breast development. J Mammary Gland Biol Neoplasia 5, 119-137.
Hu, J., Qin, K., Zhang, Y., Gong, J., Li, N., Lv, D., Xiang, R., and Tan, X. (2011). Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun 411, 786-791.
Hu, Z., Fan, C., Oh, D.S., Marron, J.S., He, X., Qaqish, B.F., Livasy, C., Carey, L.A., Reynolds, E., Dressler, L., et al. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96.
Jaenisch, R., and Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582.
Jeter, C.R., Badeaux, M., Choy, G., Chandra, D., Patrawala, L., Liu, C., Calhoun-Davis, T., Zaehres, H., Daley, G.Q., and Tang, D.G. (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 27, 993-1005.
Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635-647.
Kang, J., Shakya, A., and Tantin, D. (2009). Stem cells, stress, metabolism and cancer: a drama in two Octs. Trends Biochem Sci 34, 491-499.
Lagadec, C., Vlashi, E., Della Donna, L., Dekmezian, C., and Pajonk, F. (2012). Radiation-induced reprogramming of breast cancer cells. Stem Cells 30, 833-844.
Lee, H.E., Kim, J.H., Kim, Y.J., Choi, S.Y., Kim, S.W., Kang, E., Chung, I.Y., Kim, I.A., Kim, E.J., Choi, Y., et al. (2011). An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 104, 1730-1738.
Lee, Y.S., and Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21, 1025-1030.
Leis, O., Eguiara, A., Lopez-Arribillaga, E., Alberdi, M.J., Hernandez-Garcia, S., Elorriaga, K., Pandiella, A., Rezola, R., and Martin, A.G. (2011). Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene.
Leis, O., Eguiara, A., Lopez-Arribillaga, E., Alberdi, M.J., Hernandez-Garcia, S., Elorriaga, K., Pandiella, A., Rezola, R., and Martin, A.G. (2012). Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 31, 1354-1365.
Lengerke, C., Fehm, T., Kurth, R., Neubauer, H., Scheble, V., Muller, F., Schneider, F., Petersen, K., Wallwiener, D., Kanz, L., et al. (2011). Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer 11, 42.
Lester, S.C., Bose, S., Chen, Y.Y., Connolly, J.L., de Baca, M.E., Fitzgibbons, P.L., Hayes, D.F., Kleer, C., O'Malley, F.P., Page, D.L., et al. (2009). Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med 133, 1515-1538.
Lewis, M.T., and Veltmaat, J.M. (2004). Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 9, 165-181.
Liang, J., Wan, M., Zhang, Y., Gu, P., Xin, H., Jung, S.Y., Qin, J., Wong, J., Cooney, A.J., Liu, D., et al. (2008). Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol 10, 731-739.
Liu, C.G., Lu, Y., Wang, B.B., Zhang, Y.J., Zhang, R.S., Chen, B., Xu, H., Jin, F., and Lu, P. (2011a). Clinical implications of stem cell gene Oct-4 expression in breast cancer. Ann Surg 253, 1165-1171.
Liu, Q., Li, J.G., Zheng, X.Y., Jin, F., and Dong, H.T. (2009). Expression of CD133, PAX2, ESA, and GPR30 in invasive ductal breast carcinomas. Chin Med J (Engl) 122, 2763-2769.
Liu, Q., Lv, G.D., Qin, X., Gen, Y.H., Zheng, S.T., Liu, T., and Lu, X.M. (2011b). Role of microRNA let-7 and effect to HMGA2 in esophageal squamous cell carcinoma. Mol Biol Rep.
Liu, S., Dontu, G., and Wicha, M.S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7, 86-95.
Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38, 431-440.
Lou, H., and Dean, M. (2007). Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 26, 1357-1360.
Loughlin, F.E., Gebert, L.F., Towbin, H., Brunschweiger, A., Hall, J., and Allain, F.H. (2011). Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat Struct Mol Biol.
Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642.
Mohsin, S.K., Weiss, H., Havighurst, T., Clark, G.M., Berardo, M., Roanh le, D., To, T.V., Qian, Z., Love, R.R., and Allred, D.C. (2004). Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol 17, 1545-1554.
Molyneux, G., Regan, J., and Smalley, M.J. (2007). Mammary stem cells and breast cancer. Cell Mol Life Sci 64, 3248-3260.
Morrison, B.J., Schmidt, C.W., Lakhani, S.R., Reynolds, B.A., and Lopez, J.A. (2008). Breast cancer stem cells: implications for therapy of breast cancer. Breast Cancer Res 10, 210.
Nagata, T., Shimada, Y., Sekine, S., Hori, R., Matsui, K., Okumura, T., Sawada, S., Fukuoka, J., and Tsukada, K. (2012). Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer.
Nakshatri, H., Srour, E.F., and Badve, S. (2009). Breast cancer stem cells and intrinsic subtypes: controversies rage on. Curr Stem Cell Res Ther 4, 50-60.
Neumann, J., Bahr, F., Horst, D., Kriegl, L., Engel, J., Luque, R.M., Gerhard, M., Kirchner, T., and Jung, A. (2011). SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer 11, 518.
Newman, M.A., Thomson, J.M., and Hammond, S.M. (2008). Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539-1549.
Nguyen, N.P., Almeida, F.S., Chi, A., Nguyen, L.M., Cohen, D., Karlsson, U., and Vinh-Hung, V. (2010). Molecular biology of breast cancer stem cells: Potential clinical applications. Cancer Treatment Reviews 36, 485-491.
Nielsen, T.O., Hsu, F.D., Jensen, K., Cheang, M., Karaca, G., Hu, Z., Hernandez-Boussard, T., Livasy, C., Cowan, D., Dressler, L., et al. (2004). Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10, 5367-5374.
Nielsen, T.O., Parker, J.S., Leung, S., Voduc, D., Ebbert, M., Vickery, T., Davies, S.R., Snider, J., Stijleman, I.J., Reed, J., et al. (2010). A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16, 5222-5232.
Ogura, A., Watanabe, Y., Iizuka, D., Yasui, H., Amitani, M., Kobayashi, S., Kuwabara, M., and Inanami, O. (2008). Radiation-induced apoptosis of tumor cells is facilitated by inhibition of the interaction between Survivin and Smac/DIABLO. Cancer Lett 259, 71-81.
Ohm, J.E., Mali, P., Van Neste, L., Berman, D.M., Liang, L., Pandiyan, K., Briggs, K.J., Zhang, W., Argani, P., Simons, B., et al. (2010). Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res 70, 7662-7673.
Pardo, M., Lang, B., Yu, L., Prosser, H., Bradley, A., Babu, M.M., and Choudhary, J. (2010). An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382-395.
Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Molecular portraits of human breast tumours. Nature 406, 747-752.
Pesce, M., and Scholer, H.R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, 271-278.
Phillips, T.M., McBride, W.H., and Pajonk, F. (2006). The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98, 1777-1785.
Polesskaya, A., Cuvellier, S., Naguibneva, I., Duquet, A., Moss, E.G., and Harel-Bellan, A. (2007). Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev 21, 1125-1138.
Qiu, C., Ma, Y., Wang, J., Peng, S., and Huang, Y. (2010). Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res 38, 1240-1248.
Rakha, E.A., Elsheikh, S.E., Aleskandarany, M.A., Habashi, H.O., Green, A.R., Powe, D.G., El-Sayed, M.E., Benhasouna, A., Brunet, J.S., Akslen, L.A., et al. (2009). Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15, 2302-2310.
Reiner, A., Spona, J., Reiner, G., Schemper, M., Kolb, R., Kwasny, W., Fugger, R., Jakesz, R., and Holzner, J.H. (1986). Estrogen receptor analysis on biopsies and fine-needle aspirates from human breast carcinoma. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Am J Pathol 125, 443-449.
Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105-111.
Rodriguez-Pinilla, S.M., Sarrio, D., Moreno-Bueno, G., Rodriguez-Gil, Y., Martinez, M.A., Hernandez, L., Hardisson, D., Reis-Filho, J.S., and Palacios, J. (2007). Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 20, 474-481.
Saijoh, Y., Fujii, H., Meno, C., Sato, M., Hirota, Y., Nagamatsu, S., Ikeda, M., and Hamada, H. (1996). Identification of putative downstream genes of Oct-3, a pluripotent cell-specific transcription factor. Genes Cells 1, 239-252.
Sakurai, M., Miki, Y., Masuda, M., Hata, S., Shibahara, Y., Hirakawa, H., Suzuki, T., and Sasano, H. (2011). LIN28: A regulator of tumor-suppressing activity of let-7 microRNA in human breast cancer. J Steroid Biochem Mol Biol.
Sakurai, M., Miki, Y., Masuda, M., Hata, S., Shibahara, Y., Hirakawa, H., Suzuki, T., and Sasano, H. (2012). LIN28: A regulator of tumor-suppressing activity of let-7 microRNA in human breast cancer. J Steroid Biochem Mol Biol 131, 101-106.
Scholer, H.R. (1991). Octamania: the POU factors in murine development. Trends Genet 7, 323-329.
Sihto, H., Lundin, J., Lundin, M., Lehtimaki, T., Ristimaki, A., Holli, K., Sailas, L., Kataja, V., Turpeenniemi-Hujanen, T., Isola, J., et al. (2011). Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study. Breast Cancer Res 13, R87.
Simoes, B.M., Piva, M., Iriondo, O., Comaills, V., Lopez-Ruiz, J.A., Zabalza, I., Mieza, J.A., Acinas, O., and Vivanco, M.D. (2011). Effects of estrogen on the proportion of stem cells in the breast. Breast Cancer Res Treat 129, 23-35.
Smalley, M., and Ashworth, A. (2003). Stem cells and breast cancer: A field in transit. Nat Rev Cancer 3, 832-844.
Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M., and Rogers, D. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688-690.
Sorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98, 10869-10874.
Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100, 8418-8423.
Tai, M.H., Chang, C.C., Kiupel, M., Webster, J.D., Olson, L.K., and Trosko, J.E. (2005). Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26, 495-502.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
Tan, Y.O., Han, S., Lu, Y.S., Yip, C.H., Sunpaweravong, P., Jeong, J., Caguioa, P.B., Aggarwal, S., Yeoh, E.M., and Moon, H. (2010). The prevalence and assessment of ErbB2-positive breast cancer in Asia: a literature survey. Cancer 116, 5348-5357.
Tomioka, M., Nishimoto, M., Miyagi, S., Katayanagi, T., Fukui, N., Niwa, H., Muramatsu, M., and Okuda, A. (2002). Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 30, 3202-3213.
Tong, M., Lv, Z., Liu, L., Zhu, H., Zheng, Q.Y., Zhao, X.Y., Li, W., Wu, Y.B., Zhang, H.J., Wu, H.J., et al. (2011). Mice generated from tetraploid complementation competent iPS cells show similar developmental features as those from ES cells but are prone to tumorigenesis. Cell Res 21, 1634-1637.
Visvader, J.E., and Lindeman, G.J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8, 755-768.
Viswanathan, S.R., Daley, G.Q., and Gregory, R.I. (2008). Selective blockade of microRNA processing by Lin28. Science 320, 97-100.
Wang, J., Levasseur, D.N., and Orkin, S.H. (2008). Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A 105, 6326-6331.
Wang, Q., He, W., Lu, C., Wang, Z., Wang, J., Giercksky, K.E., Nesland, J.M., and Suo, Z. (2009a). Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res 29, 1233-1241.
Wang, X., Zhao, Y., Xiao, Z., Chen, B., Wei, Z., Wang, B., Zhang, J., Han, J., Gao, Y., Li, L., et al. (2009b). Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells 27, 1265-1275.
Wedemeyer, G. (2010). Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med 134, 505.
Wolff, A.C., Hammond, M.E., Schwartz, J.N., Hagerty, K.L., Allred, D.C., Cote, R.J., Dowsett, M., Fitzgibbons, P.L., Hanna, W.M., Langer, A., et al. (2007). American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25, 118-145.
Xi, R., and Xie, T. (2005). Stem cell self-renewal controlled by chromatin remodeling factors. Science 310, 1487-1489.
Xu, B., and Huang, Y. (2009). Histone H2a mRNA interacts with Lin28 and contains a Lin28-dependent posttranscriptional regulatory element. Nucleic Acids Res 37, 4256-4263.
Xu, B., Zhang, K., and Huang, Y. (2009). Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells. RNA 15, 357-361.
Ye, F., Li, Y., Hu, Y., Zhou, C., and Chen, H. (2011). Expression of Sox2 in human ovarian epithelial carcinoma. J Cancer Res Clin Oncol 137, 131-137.
Yin, H., and Glass, J. (2011). The phenotypic radiation resistance of CD44+/CD24(-or low) breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS ONE 6, e24080.
Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920.
Yun, J., Frankenberger, C.A., Kuo, W.L., Boelens, M.C., Eves, E.M., Cheng, N., Liang, H., Li, W.H., Ishwaran, H., Minn, A.J., et al. (2011). Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J 30, 4500-4514.
Zhang, X., Neganova, I., Przyborski, S., Yang, C., Cooke, M., Atkinson, S.P., Anyfantis, G., Fenyk, S., Keith, W.N., Hoare, S.F., et al. (2009). A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. J Cell Biol 184, 67-82.
Zhang, X., Yu, H., Yang, Y., Zhu, R., Bai, J., Peng, Z., He, Y., Chen, L., Chen, W., Fang, D., et al. (2010). SOX2 in gastric carcinoma, but not Hath1, is related to patients' clinicopathological features and prognosis. J Gastrointest Surg 14, 1220-1226.
Zhao, P., Lu, Y., Jiang, X., and Li, X. (2011). Clinicopathological significance and prognostic value of CD133 expression in triple-negative breast carcinoma. Cancer Sci 102, 1107-1111.
Zhong, X., Li, N., Liang, S., Huang, Q., Coukos, G., and Zhang, L. (2010). Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem 285, 41961-41971.
Zhou, B.B., Zhang, H., Damelin, M., Geles, K.G., Grindley, J.C., and Dirks, P.B. (2009). Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8, 806-823.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code