Responsive image
博碩士論文 etd-0830112-162602 詳細資訊
Title page for etd-0830112-162602
論文名稱
Title
二氧化鈦與氧化鉀對摻鉻氧化矽玻璃與玻璃陶瓷之光學特性影響暨雷射誘發結晶之影響
The Effect of TiO2 and K2O on Optical Property and Laser-induced Crystallization in Cr-doped silica-based Glass and Glass-ceramics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-22
繳交日期
Date of Submission
2012-08-30
關鍵字
Keywords
摻鉻玻璃、晶體、二氧化鈦、氧化鉀
K2O, TiO2, crystal, Chromium-doped glass
統計
Statistics
本論文已被瀏覽 5676 次,被下載 532
The thesis/dissertation has been browsed 5676 times, has been downloaded 532 times.
中文摘要
論文主要在研究TiO2與K2O此兩種化合物,對於摻鉻玻璃以及摻鉻玻璃陶瓷之影響。由於改良式氣相沉積法(MCVD)摻鉻光纖預形體的製作過程中,對於Ti與K此兩種元素之添加上遭遇困難,但其對後續成品是否有影響並不曉得。因此對此兩種化合物進行探討,希望能在了解後進而對組成上進行改良,以其製作摻鉻光纖預形體順利。
本實驗分別改變TiO2與K2O在摻鉻玻璃組成中的含量,再進一步的對其進行光學及材料特性的量測。實驗結果證實,TiO2一般做為成核劑之化合物,對於結晶晶相並無影響,其主要功能在於幫助晶體的形成,從XRD的結果中即可得知。最主要影響晶相的為K2O,K2O的添加與否,才是影響Mg2SiO4晶相形成的最主要原因。而改變組成後,其晶相的差別對於摻鉻玻璃之螢光特性有何影響,在本篇論文中將有詳細的討論。
此外,本研究延續實驗室之前開發出來的新式雷射熱處理方式:二次雷射,希望能成功應用在未來抽製摻鉻光纖之上。本論文所提出之CO2雷射熱處理方式,能有效的在玻璃內部產生結晶轉變為玻璃陶瓷。同時,能夠有效的縮短熱處理之時間,大幅降低其成本。除此之外,還能利用二次雷射之方法,縮小晶體的尺寸,降低其散射損失。在改變組成後之雷射熱處理後之影響也將有深入的討論。
Abstract
This thesis mainly studying the impact of TiO2 and K2O these two compounds in the Chromium-doped glasses and glass-ceramics. Due to the method of Modified Chemical Vapor Deposition (MCVD) of Chromium-doped fiber preform production process, the Ti and K elements have some difficulties; thus, we discuss the influences of these two elements. We hope to improve the composition after knowing these two elements, in order to make the Chromium-doped fiber preform well.
We change the weight percent of TiO2 and K2O in the glass composition, in order to observe the influences. Then, we measure their optical and material properties. The results of experiments show that the well-known nucleation agent: TiO2, have no effect of the crystalline phase. However, its function is to help the formation of crystals. We can conclude by the results of X-ray Diffraction (XRD). K2O plays an important role of the Mg2SiO4 phase. To add K2O or not, is the most important reason to affect the Mg2SiO4 phase formation. We will discuss in detail in this thesis about the phase difference for the fluorescence characteristics of Chromium-doped glass and glass-ceramics.
What’s more, we use the previously developed two times laser heat-treatment, hoping to successfully apply for Chromium-doped fiber drawing in the future. The laser heat-treatment of CO2-laser can induce the crystal in the glasses. However, this method only needs just a few seconds, which can reduce the cost of heat-treatment. In addition, we can reduce the crystalline size by using the method of two times laser heat-treatment, which can decrease the scattering loss. Also, we will discuss the impact of laser heat-treatment after changing the composition.
目次 Table of Contents
論文審定書 (中文) i
論文審定書 (英文) ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 序論 1
1.1 前言: 1
1.2 研究背景: 1
1.3 研究目的: 2
1.4 本文架構 3
第二章 摻鉻玻璃之本質特性與雷射熱處理 4
2.1 摻鉻玻璃(Cr-doped glass) 4
2.1.1 摻鉻玻璃之吸收光譜與螢光光譜 5
2.2 摻鉻玻璃陶瓷(Cr-doped glass-ceramic) 6
2.2.1 摻鉻玻璃陶瓷之吸收光譜與螢光光譜 7
2.2.2 玻璃陶瓷結晶機制 8
2.3 摻鉻玻璃與玻璃陶瓷之能帶、能階模型 9
2.3.1 摻鉻玻璃之光譜與能階模型 10
2.3.2 摻鉻玻璃陶瓷之光譜與能階模型 10
2.4 雷射熱處理 11
2.4.1 摻鉻玻璃雷射熱處理 11
2.4.2 傳統雷射加工參數 13
第三章 實驗步驟與量測原理 15
3.1 摻鉻玻璃樣品之製備 15
3.2 摻鉻玻璃陶瓷之製備 16
3.3 摻鉻玻璃與玻璃陶瓷特性量測 17
3.3.1 吸收光譜(Absorption Spectra): 17
3.3.2 熱差分析儀(Differential Thermal Analysis,DTA): 18
3.3.3 X光繞射(X-ray Diffraction,XRD): 18
3.3.4 螢光光譜(Fluorescence Spectra): 19
3.3.5 偏光顯微鏡(Polarization Microscopy): 19
3.3.6 近場光學顯微鏡(Near-field Scanning Microscopy): 20
第四章 實驗結果與量測分析 22
4.1 熱處理後之樣品圖 22
4.2 摻鉻玻璃與玻璃陶瓷光學特性分析 24
4.2.1吸收光譜分析 24
4.2.2 配位場分析 27
4.2.2 螢光光譜分析 33
4.2.3 表面螢光分佈圖 35
4.3 摻鉻玻璃與玻璃陶瓷之材料特性分析 38
4.3.1 熱差分析儀曲線分析(DTA) 38
4.3.2 玻璃陶瓷內部結晶晶相分析(XRD) 40
4.4 雷射熱處理 46
4.4.1 先前技術回顧 46
4.4.2 一次雷射熱處理 49
4.4.3 二次雷射熱處理 50
第五章 結論 52
參考文獻 54
參考文獻 References
[1] 山下真司. (2003). 圖解光纖通信原理與散新應用技術: 建興文化.

[2] Desurvire, E. (1994). Erbium-doped Fiber Amplifiers: Principles and Applications: New York, Wiley. Ch 4.

[3] Shi, Y., & Poulsen, O. (1993). High-power broadband singlemode Pr3+-doped fibre superfluorescence light source. Electronics Letters, 29(22), 1945-1946.

[4] Moncorge, R., Cormier, G., Simkin, D. J., & Capobianco, J. A. (1991). Fluorescence analysis of chromium-doped forsterite (Mg2SiO4). Quantum Electronics, IEEE Journal of, 27(1), 114-120.

[5] Moncorge, R., Manaa, H., & Boulon, G. (1994). Cr4+ and Mn5+ active centers for new solid state laser materials. Optical Materials, 4(1), 139-151.

[6] Sharonov, M. Y., Bykov, A. B., Owen, S., V, P., Alfano, R. R., Beall, G. H., & Borrelli, N. (2004). Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics doped with chromium. Journal of the Optical Society of America B-Optical Physics, 21(11), 2046-2052.

[7] Sharonov, M. Y., Bykov, A. B., Myint, T., Petricevic, V., & Alfano, R. R. (2007). Spectroscopic study of chromium-doped transparent calcium germanate glass-ceramics. Optics Communications, 275(1), 123-128.

[8] Downey, K. E., Samson, B. N., Beall, G. H., Mozdy, E. J., Pinckney, L. R., Borrelli, N. F., . . . Kerdoncuff, A. (2001). Cr4+:forsterite nanocrystalline glass-ceramic fiber. Paper presented at the Lasers and Electro-Optics, 2001. CLEO '01. Technical Digest. Summaries of papers presented at the Conference on.

[9] PetriCevic, V., Gayen, S. K., Alfano, R. R., Yamagishi, K., Anzai, H., & Yamaguchi, Y. (1988). Laser action in chromium-doped forsterite. Applied Physics Letters, 52(13), 1040-1042.

[10] Murata, T., Torisaka, M., Takebe, H., & Morinaga, K. (1997). Compositional dependence of the valency state of Cr ions in oxide glasses. Journal of Non-Crystalline Solids, 220(2-3), 139-146.

[11] Munin, E., Villaverde, A. B., Bass, M., & CerquaRichardson, K. (1997). Optical absorption, absorption saturation and a useful figure of merit for chromium doped glasses. Journal of Physics and Chemistry of Solids, 58(1), 51-57.

[12] Andrews, L. J., Lempicki, A., & Mccollum, B. C. (1981). Spectroscopy and Photokinetics of Chromium (III) in Glass. Journal of Chemical Physics, 74(10), 5526-5538.

[13] Imbusch, G. F., Glynn, T. J., & Morgan, G. P. (1990). On the Quantum Efficiency of Chromium-Doped Glasses. Journal of Luminescence, 45(1-6), 63-65.

[14] Kisliuk, P., & Moore, C. A. (1967). Radiation from the 4T2 State of Cr3+ in Ruby and Emerald. Physical Review, 160(2), 307-312.

[15] Struve, B., & Huber, G. (1985). The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals. Applied Physics B: Lasers and Optics, 36(4), 195-201.

[16] Wood, D. L. (1965). Adsorption Fluorescence and Zeeman Effect in Emerald. Journal of Chemical Physics, 42(10), 3404

[17] Holand, W., & Beall, G. (2002). Glass ceramic technology. Recherche, 67, 02.

[18] Deng, D. G., Ma, H. P., Xu, S. Q., Wang, Q. A., Huang, L. H., Zhao, S. L., . . . Li, C. X. (2010). Spectroscopic study of Cr4+-doped transparent willemite nanocrystalline glass-ceramics. Journal of the Optical Society of America B-Optical Physics, 27(8), 1659-1663.

[19] Varshneya, A. K. (1994). Fundamentals of inorganic glasses: Arun K. Varshneya: Academic Pr.

[20] 陳奕君. (2006). 負熱膨脹性鋰鋁矽酸鹽玻璃陶瓷. (碩士), 大同大學, 台北市.

[21] Simmons, J. H., Uhlmann, D. R., Beall, G. H., & American Ceramic Society, M. (1982). Nucleation and crystallization in glasses, Columbus, Ohio.

[22] Kalisky, Y. (2004). Cr4+-doped crystals: their use as lasers and passive Q-switches. Progress in Quantum Electronics, 28(5), 249-303.

[23] 陳威安. (2010). 掺鉻玻璃陶瓷元件利用近場光學掃描式顯微鏡的微結構螢光特性研究. (碩士), 國立中山大學, 高雄市.

[24] Henderson, B., & Imbusch, G. F. (2006). Optical spectroscopy of inorganic solids (Vol. 44): Oxford University Press, USA.

[25] Sugano, S., Tanabe, Y., & Kamimura, H. (1970). Multiplets of transition-metal ions in crystals. New York: Academic Press.

[26] Douglas, B. E., & Hollingsworth, C. A. (1985). Symmetry in bonding and spectra : an introduction. Orlando: Academic Press.

[27] Lempicki, A., Andrews, L., Nettel, S. J., McCollum, B. C., & Solomon, E. I. (1980). Spectroscopy of Cr3+ in Glasses: Fano Antiresonances and Vibronic "Lamb Shift". Physical Review Letters, 44(18), 1234-1237.

[28] Kuck, S., Petermann, K., Pohlmann, U., & Huber, G. (1996). Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12. Journal of Luminescence, 68(1), 1-14.

[29] Feng, X., & Tanabe, S. (2002). Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses. Optical Materials, 20(1), 63-72.

[30] Jia, W. Y., Liu, H. M., Jaffe, S., Yen, W. M., & Denker, B. (1991). Spectroscopy of Cr3+ and Cr4+ Ions in Forsterite. Physical Review B, 43(7), 5234-5242.

[31] 呂助增. (2001). 雷射原理與應用. 台中: 滄海書局.

[32] 蘇品書. (2001). 雷射原理與實用技術. 台南: 複漢出版社.

[33] Kerker, M. (1969). The scattering of light, and other electromagnetic radiation. New York: Academic Press.

[34] Beall, G. H., & Pinckney, L. R. (1999). Nanophase glass-ceramics. Journal of the American Ceramic Society, 82(1), 5-16.

[35] Keast, D. J., & Storey, B. E. (1968). A Possible Contribution to Light Loss in Calcium Tungstate and Yttrium Aluminium Garnet Laser Crystals by Scattering. Journal of Physics D-Applied Physics, 1(4), 524-527

[36] de Graaf, R. F., & Meijer, J. (2000). Laser cutting of metal laminates: analysis and experimental validation. Journal of Materials Processing Technology, 103(1), 23-28.

[37] 紀兆南. (2004). 雷射直寫技術於金屬微結構加工與拋光之研究. (碩士), 國立中正大學, 嘉義縣.

[38] 蔡昆霖. (2005). 應用飛秒雷射對高分子及不銹鋼金屬材料做細微加工之研究. (碩士), 國立臺灣科技大學, 台北市.

[39] 沈峰熙. (2011). 二氧化矽對摻鉻玻璃與玻璃陶瓷光學性質影響與改善與雷射誘發結晶之研究. (碩士), 國立中山大學, 高雄市.

[40] 黃智煒. (2010). 掺鉻鈣鍺玻璃陶瓷之研製與光學特性分析. (碩士), 國立中山大學, 高雄市.

[41] Batchelor, C., Chung, W. J., Shen, S., & Jha, A. (2003). Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses. Applied Physics Letters, 82(23), 4035-4037.

[42] Gray, P., & Klein, L. C. (1984). Optical-Spectra of Sodium-Phosphate Glasses. Journal of Non-Crystalline Solids, 68(1), 75-86.

[43] Choi, Y. G., Kim, K. H., Han, Y. S., & Heo, J. (2000). Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses. Chemical Physics Letters, 329(5), 370-376.

[44] Eilers, H., Hommerich, U., Jacobsen, S. M., Yen, W. M., Hoffman, K. R., & Jia, W. (1994). Spectroscopy and Dynamics of Cr4+ :Y3Al5O12. Physical Review B, 49(22), 15505-15513.

[45] Deka, C., Bass, M., Chai, B. H. T., & Shimony, Y. (1993). Optical Spectroscopy of Cr4+:Y2SiO5. Journal of the Optical Society of America B-Optical Physics, 10(9), 1499-1507.

[46] Lee, H. K., Lee, Y. S., Bhalla, A. S., & Kang, W. H. (2006). The effect of K2O in the glass–ceramics based on the BaO–TiO2–SiO2 glasses. Materials Letters, 60(20), 2457-2460.

[47] Keshavarzi, A., & Russel, C. (2012). The effect of TiO2 and ZrO2 addition on the crystallization of Ce3+ doped yttrium aluminum garnet from glasses in the system Y2O3/Al2O3/SiO2/AlF3. Materials Chemistry and Physics, 132(2–3), 278-283.

[48] Kothiyal, G., & Anathanarayanan, A. (2010). The role of thermal analysis techniques in the optimization of lithium aluminum silicate (LAS) glasses for sealing applications. INSIDE THIS ISSUE, 9.

[49] Thakur, O., Kumar, D., Parkash, O., & Pandey, L. (1995). Effect of K2O addition on crystallization and microstructural behaviour of the strontium titanate-borosilicate glass-ceramic system. Materials Letters, 23(4-6), 253-260.

[50] Lim, Y., & Lee, M. (2007). Crystalline patterning in Sm-doped sodium borate glass by CW Nd: YAG laser irradiation. Applied Surface Science, 254(4), 908-910.

[51] Krol, D. M. (2008). Femtosecond laser modification of glass. Journal of Non-Crystalline Solids, 354(2–9), 416-424.

[52] 何義麟, & 蔡育宜. (2006). K2O對TiO2光觸媒性質及光催化BRL染料脫色效率之影響
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code