Responsive image
博碩士論文 etd-0830112-163521 詳細資訊
Title page for etd-0830112-163521
論文名稱
Title
利用濺鍍二氧化矽量子井熱混合方式製作電致吸收調變器與半導體光放大器
Sputtered SiO2 Enhance Quantum Well Intermixing for Integration of Electroabsorption Modulators and Semiconductor Optical Amplifiers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-18
繳交日期
Date of Submission
2012-08-30
關鍵字
Keywords
量子井熱混合擴散、應力、氮化矽、二氧化矽、能隙工程、內部晶格缺位擴散
Bandgap engineering, Quantum Well Intermixing, Impurity Free Vacancy Diffusion, SiO2, Si3N4, Stress
統計
Statistics
本論文已被瀏覽 5680 次,被下載 689
The thesis/dissertation has been browsed 5680 times, has been downloaded 689 times.
中文摘要
本文中,以量子井熱混合擴散方式-內部晶格缺位擴散,來調整材料能隙以達到光積體整合的最佳化,並以此技術整合電致吸收光調變器與半導體光放大器為研究。藉由該擴散機制,可區域性調整材料能隙,使單一晶片中光調變器操作波長往短波長移動,又稱之為藍位移。如此可使得光調變器整合光放大器元件有更好的性能。
在研究中,利用二氧化矽及氮化矽兩種介電質材料,來執行內部晶格缺位擴散,這兩種材料在快速熱退火時皆會在晶片表面產生應力,但由於其原子間的化學反應不同而產生截然不同的結果。藉由Ga擴散到二氧化矽中使得應力獲得釋放,而在晶片表面留下空缺,再經由快速熱退火使空缺擴散到主動層,達成熱混合擴散作用;而在濺鍍氮化矽的區域則無明顯藍位移現象,顯示原子間化學作用主導著量子井熱混合擴散的發生。研究中進一步使用二氧化碳的超臨界流體,並於腔體內加入雙氧水,以改善二氧化矽的品質,使藍位移的量達到180nm。利用不同介電質材料間的差異,可在晶片中不同區域給予不同能帶間隙。將此方法應用在製作電致吸收光調變器與半導體光放大器,從元件特性證實,可在30μm×50μm的尺度內調變能帶間隙,並且將電致吸收光調變器與半導體光放大器的操作波長分開40nm。往後更可利用此技術,在大面積的晶片上,不需重複磊晶,以相當便宜簡單的方法區域性的調整能帶間隙來完成積體光路的製作。
Abstract
In this work, a quantum well intermixing(QWI) technology, called impurity free vacancy diffusion(IFVD), is used to do the bandgap engineering in an optoelectronic monolithic integration. The monolithic integration of SOAs and EAMs is taken as an example. By IFVD, the transition energy levels of EAM quantum wells can be shifted to shorter wavelength region, while SOA quantum wells are kept the same. Therefore, the overall SOA-integrated EAM efficiency can be improved.
We use dielectric film—SiO2 and Si3N4 to control the impurity free vacancy diffusion, both of these two dielectric layer will induce stress on the wafer, but they will come to the totally different result base on the difference atom chemistry with the substrate. Using Ga atom diffusion into SiO2 to relax stress, the IFVD will be operated to enhance quantum well intermixing, leading to energy bang transition change. On the other hand, with Si3N4 film, no significant intermixing is observed, implying atom chemistry dominates the whole process. Also, a super critical fluid technique by H2O2 is also employed to further improving SiO2 quality, a as large as 180nm blue shift is obtained, further improving such mechanism. Through difference properties between SiO2 and Si3N4 dielectric layers, different bandgap transitions in one single chip can be controlled in an area of 30μm×50μm, leading to a planar bandgap engineering. Use these techniques, an EAM-SOA integration is designed and fabricated, obtaining an wavelength offset of 40nm with good quality of material structure. In the future, we can use this technique on large scale chip, tuning the bandgap to make photonic integration circuit without re-growth.
目次 Table of Contents
中文摘要 ........................................................................... i
英文摘要 .......................................................................... ii
圖次 ................................................................................. v
第一章 簡介 .................................................................... 1
1.1 前言.............................................................. 1
1.2 研究動機—EAM-SOA .................................... 1
1.3 材料能隙工程 ............................................... 3
1.4 先前工作 ...................................................... 6
1.5 研究動機—整合元件 ..................................... 8
第二章 理論與計算 .......................................................... 9
2.1 熱混合擴散原理 ............................................ 9
2.2 計算熱混合擴散之量子井 ............................. 11
2.3 熱混合擴散效應下能帶結構的改變 ............... 13
2.4 量子井波函數與基態的計算 ......................... 17
第三章 材料分析 ............................................................ 19
3.1 SiO2 的氧化--超臨界流體 ............................. 20
3.2 表面應力 ..................................................... 21
3.2.1 SiO2 厚度與量子井熱混合擴散之關係 ......... 21
3.2.2 Si3N4 與量子井熱混合擴散之關係 ............... 22
3.3 SiO2 氧化與應力增加的加乘效果 .................. 25
第四章 熱混合擴散與整合元件之方法與製作 .................. 27
4.1 熱混合擴散製程 ........................................... 27
4.2 整合元件製程 .............................................. 30
4.2.1 離子佈植與蒸鍍P 型金屬 ........................... 30
4.2.2 濕蝕刻P 型被動光波導 ............................... 31
4.2.3 底切蝕刻主動波導 ...................................... 33
4.2.4 蒸鍍N 型金屬與定義絕緣層 ....................... 33
4.2.5 平坦化製程 ................................................ 35
4.2.6 蒸鍍共平面電極 ......................................... 36
第五章 元件特性量測與分析 ........................................... 37
5.1 EAMSOA 整合元件直流分析 ...................... 37
第六章 結論與未來工作 .................................................. 41
6.1 結論 ........................................................... 41
6.2 未來工作 .................................................... 42
6.2.1 應力 .......................................................... 42
6.2.2 原子間化學反應......................................... 42
6.2.3 應用 .......................................................... 42
第七章 參考資料與文獻 .................................................. 43
參考文獻 References
[1] http://projects.csail.mit.edu/angstrom/SLS/AngstromStudentMeeting12-1-10.pdf
[2] P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C.Jagadish, “Silane Flow Rate Dependence of SiOx Cap Layer Induced Impurity-Free Intermixing of GaAs/AlGaAs Quantum Wells,” Journal of The Electrochemical Society, Vol.147, 2000.
[3] D. L. Green and E. L. Hu, ”Effect of superlattices on the low-energy ion-induced damage in GaAs/Al(Ga)As structures,” J. Vac. Sci. Technol. B12(6),Nov/Dec 1994.
[4] H. S. Diie and T. Mei, ”Plasma-Induced Quantum Well Intermixing for Monolithic Photonic Integration,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 2, March/April 2005.
[5] H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, ”Experimental and Theoretical Analysis of Argon Plasma-Enhanced Quantum-Well Intermixing,” IEEE Journal of Quantum Electronics, Vol. 40, No. 2, February 2004.
[6] S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, ”Photonic Integrated Circuits Fabricated Using Ion Implantation,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 4, July/August 1998.
[7] O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, “A universal damage induced technique for quantum well intermixing,” Appl. Vol. 72, 5 Number /2 February 1998.
[8] I. Gontijo, T. Krauss, J. H. Marsh, and R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE Journal of Quantum Electronic, vol. 30, May 1994.
[9] L.J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, and W.E. Plano, “Effects of dielectric encapsulation and As overpressure on Al-Ga interdiffusion in AlGaAs/GaAs quantum well heterostructures,” Journal Appl. Phys. 61(4), 15 February 1987.
[10] O. BS, M. K, Street MW, ”Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion” IEEE Journal of quantum electronic Vol. 33 , October 1997.
[11] S. SK, Y. DH, Y. KH, ” Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE Journal of Selected Topics in Quantum Electronics Vol.4, July/August 1998.
[12] 16]J. E. Epler, F.A. Ponce, F.J. Endicott, and T.L. Paoli, “Layer disordering of GaAs/AlGaAs superlattices by diffusion of laser-incorporated Si,” J. Appl. Phys. 64(7), 1 October 1988.
[13] E. H. Li, and B. L. Weiss, “Analytical Solution of the Subbands and Absorption Coefficients of AlGaAs/GaAs Hyperbolic,” IEEE Journal of quantum electronic, Vol. 29, No. 2. February 1993
[14] H. Kroemer, “Quantum Mechanics: For Engineering, Materials Science and Applied Physics, Prentice Hall, 1994.
[15] 李政鍵 , Unsymmetry Spiked-Quantum Well Design and Electroabsorption Modulators Based on the InAlAs/InGaAlAs Material System,2004.
[16] R. JW, J. LA, S. EJ,” 40 Gbit/s photonic receivers integrating UTC photodiodes with high- and low-confinement SOAs using quantum well intermixing and MOCVD regrowth,” electronic letter Vol.42, 3 August 2006.
[17] V. Hofsass, J. Kuhn, C. Kaden, “Optical integration of laterally modified multiple quantum well structures by implantation enhanced intermixing to realize gain coupled DFB lasers,” NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, Vol. 104, December 1995.
[18] D. Hofstetter, B. Maisenholder, and H. P. Zappe, “Quantum-well intermixing for fabrication of lasers and photonic integrated circuits,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, July/August 1998.
[19] Masayuki Katayama, Yutaka Tokuda, Yajiro lnoue, Akira Usami, Takao and Wada, “Ga out- diffusion in rapid-thermal-processed GaAs with Si02 encapsulant,” American Institute of Physics,vol. 69, pp. 3541-3546, 1991
[20] S C Du, L Fu, H H Tan and C Jagadish, “Investigations of impurity-free vacancy disordering in (Al)InGaAs(P)/InGaAs quantum wells,” Semiconductor Science and Technology, vol. 25, 2010
[21] Hyun-Soo Kim, Jeong Woo Park, Dae Kon Oh, Kwang Ryong Oh, Sung June Kim and In-Hoon Choi,“ Quantum Well Intermixing of In1−xGaxAs/In1 −xGaxAs1 −yPy multiple-quantum-well structures by using the impurity-free vacancy diffusion technique,” Semicond. Sci. Technol, vol. 15, pp. 1005-1009, 2000
[22] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InP/thermal.html
[23] [16] H. Peyre, F. Alsina, J. Camassel, J. Pascual, R. W. Glew” Thermal stability of InGaAsAnGaAsP quantum wells”, J. Appl. Phys. 73 (6), 15 April 1993
[24] Shun Lien Chuang, “Physics of Optoelectronic Devices,”
[25] N. Bottka and L. D. Hutcheson, J. Appl. Phys. vol. 46,pp. 2645-2649, 1975
[26] N. Bottka,Opt. Eng.,17,530,1978
[27] J. C. Cambell, J. C. DeWinter, M. A. Pollack, and R. E. Nahory, Appl. Phys. Lett., 32,471,1978
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code