Responsive image
博碩士論文 etd-0831101-153527 詳細資訊
Title page for etd-0831101-153527
論文名稱
Title
水禽類小病毒蛋白基因之分子選殖及抗原性分析
Molecular Cloning The Genes for Waterfowl Parvoviral Proteins and Characterization of Their Antigenicity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-31
繳交日期
Date of Submission
2001-08-31
關鍵字
Keywords
基因變異、外殼蛋白基因、水禽類小病毒
Waterfowl parvovirus, Capsid protein, antigenicity, genetic variation
統計
Statistics
本論文已被瀏覽 5663 次,被下載 5915
The thesis/dissertation has been browsed 5663 times, has been downloaded 5915 times.
中文摘要
小病毒(parvovirus)在水禽類引起嚴重之病毒性腸炎,造成業者鉅大損失,為了有效防治小病毒感染而進行本實驗。由感染本病之水禽類檢體中,以聚合
Abstract
Parvoviruses cause dreadful enteritis in waterfowls and lead to tremendous financial losses. This study aims at developing effective way to prevent waterfowl parvoviral infection. Duck parvoviruses (DPVs) and goose parvoviruses (GPVs) were isolated from organs of infected waterfowls. The presence of virus in the specimens was identified using polymerase chain reaction (PCR) and subsequent restriction fragment length polymorphism (RFLP) analysis. To reveal the genetic variation of viral capsid proteins (VPs), full length VPs gene were amplified and sequenced. The sequence data indicated the sequences diverge 4.1 to 4.4% among viral strains isolated during 1990 to 1999. The variant amino acids cluster in the common regions of VP3 at residues 203-266 and 482-534, which overlaps with the regions proposed to expose on the outer surfaces of parvoviral particles. These data implying that selective pressure from host immune system might play a part. The nucleotide sequences of VPs also reveal that DPV and GPV share 77 % similarity at the DNA, and 84.6% at the protein level. The most variable regions reside in the N-terminal of VP2 before the initiation codon of VP3 with 35% (19/54) amino acids divergence. This study also reveals the presence of conserved strain-specific residues in VPs and these residues seldom vary among different isolates of the same virus, suggesting that they might be important in maintaining viral structure or host specificity which worth further investigation. To investigate the antigenicity of VPs, the GPV genomic DNA encoding common region of VPs was fused in frame with glutathione S-transferase (GST) gene for the expression of GST-GPV (248-516) fusion protein in bacterial cells. Purified fusion protein was used as immunogen for the generation of rabbit anti-GPV (248-516) antiserum. The potential diagnostic usage was confirmed by the fact that this antiserum was able to differentiate between viral infected and uninfected primary embryonic fibroblast cells by immunocytochemical analysis.
In addition, VPs in purified DPV and GPV virions were analyzed by Western blotting. This antiserum detected two prominent proteins bands with the molecule weight of 80 and 70 kilodaltons, which correspond to the sizes of VP1 and VP2 reported in the literature. The fact that VP1 of DPV reacts weakly with this antiserum suggests the existence of antigenic discrepancy between DPV and GPV. For the purpose of developing subunit vaccine for the control of Derzy's disease, recombinant full length VPs were expressed using both prokaryotic, GST and histidine-tagged fusion proteins, and eukaryotic, baculovirus and mammalian vero cell, expression systems. After large- scale production and purification, same amount of 4 recombinant VPs were individually used to immunize 1-week-old geese. The antibodies induced after immunization were then evaluated by enzyme-linked immunosorbent assay (ELISA). All four recombinant proteins stimulate approximately 7 to 8 folds increases of ELISA antibodies titers, and together with
preliminary data of safety tests suggest a potential usage as subunit vaccine for the control of parvoviral infection.
目次 Table of Contents
中文摘要..........................................I
英文摘要..........................................II
誌謝..............................................III
目錄..............................................V
表目錄............................................IX
圖目錄............................................X
第一章、緒論......................................1
第一節、小病毒之背景資料..........................1
第二節、水禽類小病毒之背景資料....................5
第三節、研究目的及實驗設計........................9
第二章、材料與方法................................11
1.DNA操作………..............................11
1-1 快速抽取DNA............................11
1-2 聚合
參考文獻 References
王敏昇。1990。台灣地區鴨鵝小病毒之核酸序列分析與酵素連結免疫吸附分析套組之開發研究。碩士論文。國立中興大學獸醫學研究所。台灣省。中華民國。

呂榮修等。1984。鵝病毒性腸炎之發生、病毒分離與免疫血清之緊急防治。臺灣省家畜衛試所研報。20: 75~84。

張照夫等。1983。肆虐本省之鵝病毒性腸炎。臺灣省畜牧獸醫學會會報。42: 37~46。

Alexandrov, M., Alexandrov, R., Alexandrov, I., and Donev, T. 1999. Fluorescent and monoclonal antibodies for detection of goose parvovirus infection. J. Virol. Methods. 79:21-32.

Astell, C. R. Terminal hairpins of parvovirus genomes and their role in DNA replication.1990. In: Handbook of Parvoviruses (P. Tijssen, Ed.) Vol. 1, pp.59-79. CRC Press, Boca Raton, FL.

Berns, K. I. 1996. Parvoviridae: the viruses and their replication. Fields Virology. 3rd ed., pp. 2173-2197.

Brown, K. E., Green, S, W., and Young, N. S. 1995. Goose parvovirus - An autonomous member of the dependovirus genus? Virology. 210: 283-291.
Chang, P. C., Shien, J. H., Wang, M. S., and Shieh, H. K. 2000. Phylogenetic analysis of parvoviruses isolated in Taiwan from ducks and geese. Avian Path.29: 45-49.

Chang, S. F., Sgro, J. Y., and Parrish, C. R. 1992. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties. J. virol. 12: 6858-6867.

Chapman, M. S. and Rossmann, M. S. 1993. Structure, sequence, and function correlations among parvoviruses. Virology. 194: 491-508.

Chu, C, Y. and Cheng, J. T. 1999. Application of polymerase chain reaction on rapid diagnosis of waterfowl parvovirus DNA. Taiwan J. Vet. Med. Anim. Husb. 69: 69-74.

Christensen, J., Pedersen, M., Asted, B., and Alexandersen, S. 1995. Purification and characterization of the major nonstructural protein (NS1) of Aleutian mink disease parvovirus. J. Virol. 69:1802-1809.

Fox, J. M., Stevenson , M. A., and Bloom, M. E. 1999. Replication of Aleutian mink disease parvovirus in vivo is influenced by residues in the VP2 protein. J. Virol. 73: 8713-8719.

Hlinak, A., Muller, T., Kramer, Muhle, R.U., Liebherr, H., and Ziedler, K. 1998 Serological survey of viral pathogens in bean and white-fronted geese from Germand. J. Wild. Dis. 34:479-486.

Huang, C. C., Hu, Y. H. and Lin, R. T. 2000. The duck industry chonology of Taiwan. Stock farming of tendays. 108(1): 94-103.

Kajigaya, S., Fujii, H., Field, A., Anderson, S., Rosenfeld, S., Anderson, L. J., Shimada, T., and Young, N. S. 1991. Self-assembled B19 parvovirus capsids, produced in a baculovirus system, are antigenically and immunogenically similar to native virions. Pro. Natl. Acad. Sci. USA 88: 4646-4650.

Kisary, J., and Derszsy, D. 1974. Viral disease of goslings. IV. Characterization of the causal agent in tissue culture system. Acta Vet. Acad. Sci, Hung. 24: 287-292.

Kisary, J. 1979. Interaction in replication between goose parvovirus strain B and duck plaque herpesvirus. Arch. Virol. 56(1-2): 81-88.

Langeveld, J. P. M., Casal, J. I., Vela, C., Dalsgarrd, K., Smale, S. H., and Meloen, R. H. 1993. B-cell epitopes of canine parvovirus: distribution on the primary structure and exposure on the viral surface. J. virol. 67(2): 765-772.

Langeveld, J. P. M., Casal, J. I., Osterhaus, A. D. M. E., Cortes, E., and Meloen, R. H. 1994. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J. virol. 68: 4506-4513.

Le Gall-Recule, G. and Jestin, V. 1994. Biochemical and genomic characterization of muscovy duck parvovirus. Arch. Virol. 139: 121-131.

Le Gall-Recule, G., Jestin, V., Chagnaud, P., Blanchard, P., and Jestin, A.1996. Expression of muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by the recombinant proteins. J. Gen. Virol. 77: 2159-2163.

Limn, C, K., Yamada, T., Nakamura, M., and Takehara, K. 1996. Detection of goose parvovirus genome by polymerase chain reaction: distribution of goose parvovius in Muscovey ducklings. Virus Res. 42: 167-172.

Lu, Y. S., Lin, D. F., Lee, Y. L., Liao, Y. K, and Tsai, H. J. 1993. Infectious bill atrophy syndrome caused by parvovirus in a co-outbreak with duck viral hepatitis in ducklings in Taiwan. Exp. Rep. TPRIAH. 29: 63-70.

Mckenna, R., Olson, N. H., Chipman, R. P., and Mckenna, M. A. 1999. Three-dimensional structure of Aleutian mink disease parvovirus: implications for disease pathogenicity. J. Virol. 73: 6882-6891.

Nuesch, J. P. F., Cotmore, S.F., and Tattersall, P. 1995. Sequence motifs in the replicator protein of parvovirus MVM essential for nicking and covalent attachment of the viral origin: identification of the linking tyrosine. Virology 209: 122-135.

Parham, P. 1995. The duck's dilemma. Nature. 374(2): 16-17.

Parker, S. L., and Parrish, C. R. 1997. Canine parvovirus host range is determined by the specific conformation of an additional region of the capsid. J. virol. 71: 9214-9222.

Rhode, J. S. L., and Parrish, C. R. 1990. Parvovirus genome: DNA sequence. In: Handbook of Parvoviruses (P. Tijssen, Ed.) Vol. 1, pp.31-57. CRC Press, Boca Raton, FL.

Saikawa, T., Anderson, S., Momoeda, M., Kajigaya, S. and Young, N.S. 1993. Neutralizing linear epitopes of B19 parvovirus cluster in the VP1 unique and VP1-VP2 junction regions. J. virol. 67: 3004-3009.

Shiau, A. L., Chu, C. Y., Su, W. C., and Wu, C. L. 2001. Vaccination with the glycoprotein D gene of pseudorabies virus delivered by nonpathogenic Escherichia coli elicits protective immune responses. Vccine 19: 3277-3284.

Siegl, G., Bate, R.C., Berns, K. I., and Tattersall, P.1985. Characteristics and taxonomy of parvoviridae. Intervirology 23: 61-73.

Sirivan, P., Obayashi, M., Nakamura, M., Tantaswasdi, U., and Takehara, K. 1998. Detection of goose and Muscovy duck parvoviruses using polymerase chain reaction-restriction enzyme fragment length polymorphism analysis. Avian Dis. 42: 133-139.

Smith, D. H., Ward, P., and Linden, M. 1999. Comparative characterization of Rep proteins from the helper-dependent Adeno- associated virus type 2 and the autonomous goose parvovirus. J. Virol. 73 : 2930-2937.

Strauss, E. G., Strauss, J. H., and Levine, A. J. 1996. Virus Evolution. Fields Virology. 3rd ed., pp. 153-169.

Strassheim, M. L., Gruenberg, P. and Parrish, C. R. 1994. Two dominant neutralizing determinants of canine parvovirus are found on the threefold spike of the capsid. Virol. 198: 175-184.

Takehara, K., Hyakutake, K., Imamura, T., Mutoh, K., and Yoshimura, M. 1994. Isolation, identification, and plaque titration of parvovirus from Muscovy ducks in Japan. Avian Disease. 38: 810- 815.

Takehara, K., Saitoh, M., Kiyono, M., and Nakamura, M.1998. Distribution of attenuated goose parvoviruses in Muscovy dukilings. J. Vet. Med. Sci. 60: 341-344.

Takehara, K., Nakata, K. Takizawa, C. K., Limn, K. M., and Nakamura, M. 1999. Expression of goose parvovirus VP1 capsid protein by a baculovirus expression system and establishment of fluorescent antibody test to diagnose goose parvovirus infection. Arch. Virol. 144:1639-1645.

Takahashi, N., Takada, N., Hashimoto, T., and Okamoto, T. 1999. Genetic heterogeneity of the immunogenic viral capsid protein region of human parvovirus B19 isolates obtained from an outbread in a pediatric ward. FEBS Lett. 450(3): 289-93.

Tattersall, P., and Cotmore, S. F. 1990. Reproduction of autonomous parvovirus DNA. In: Handbook of Parvoviruses (P. Tijssen, Ed.) Vol. 1, pp.123-140. CRC Press, Boca Raton, FL.

Thornton, J.M., Edwards, M.S., Taylor, W. R. and Barlow, D. J. 1986. Location of continuous antigenic determinants in the protruding regions of proteins. EMBO J. 5:409-413.

Tsao, J., Chapman, M. S., Agbandje, M., Keller., and Parrish, C.R. 1991. The three-dimensional structure of canine parvovirus and its functional implications. Science. 251:1456-1464.

Verne, A. L., and Max, D. S. 1988. Trends in the development of baculovirus expression vectors. Biotechnology. 6:47-55.

Ward, P., Dean, F. B., O'Donnell, M. E., and Berns, K. I. 1998. Role of the adenovirus DNA-binding protein in in vitro adeno-associated virus DNA replication.J. Virol. 72: 420-427.

Warr, W. G., Magor, K. E., and Higgins, D. A. 1995. IgY: clues to the origins of modern antibodies. Immuno. Today. 16 (8): 392-398.

Weichert, W, S., Parker, J. S. L., Wahid, A. T. M., Chang, S. F., Meier, E., and Parrish, C. R. 1998. Assay for structural variation in the parvovirus capsid and its role in infection. Virology. 150: 106-177.

Zadori, Z., Stefancsik, R., Rauch, T., and Kisary, J. 1995. Analysis of the complete nucleotide sequences of goose and Muscovy duck parvoviruses indicates common ancestral origin with adeno-associated virus 2. Virology. 212: 562-573.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code