Responsive image
博碩士論文 etd-0831107-142240 詳細資訊
Title page for etd-0831107-142240
論文名稱
Title
管路中夾持式支撐架對導波T(0,1)之影響與其模擬
The Effect of Clamp Support on the Pipe to T(0,1) Guided Wave and Its Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-06
繳交日期
Date of Submission
2007-08-31
關鍵字
Keywords
導波、夾持式支撐架、虛擬層
fictitious layer, clamp support, Guided wave
統計
Statistics
本論文已被瀏覽 5704 次,被下載 0
The thesis/dissertation has been browsed 5704 times, has been downloaded 0 times.
中文摘要
本論文主要目的為討論支撐管線的夾持式支撐架,當其因受不同扭力施加而導致其與管線之接觸邊界改變,會如何影響導波在管線上之傳遞,並用有限元素法來模擬其波傳情況。本研究使用導波T(0,1)模態在圓管上傳遞為軸對稱的特性,當夾持式支撐架在受到不同扭力的壓力下,對於不同頻率之反射係數改變作探討。在有限元素法模擬中,採用所謂的「虛擬層」觀念來描述夾持式支撐架與管線間,因受不同扭力施加的改變情況,即可分別以垂直於界面層和平行於界面層的勁度來設定不同的材料參數以達到描述此一界面之改變。根據實驗結果顯示,當施加的扭力增高時,反射係數會隨著頻率增高而下降。由實驗與模擬的結果可以得出,當施加於夾持式支撐架之扭力增加時,所得的反射係數也會隨之提高,且證明了改變平行於界面層的勁度確實會因為導波T(0,1)模態作用力之方式,而對於平行於界面層的勁度產生較靈敏的反應。
Abstract
In this study, to discuss the effect of the boundary between pipeline and clamp support changed by different pressures to the propagation of guided wave in the pipeline is the main idea. In addition, the author simulates the wave propagation situation by using finite element method. In this work, T(0,1) torsional mode was used to discuss when adding different pressures to the clamp support, the change of its reflection coefficients in different frequencies by the axial symmetric property propagates in the cylinder pipe. In the simulation, we take the “fictitious layer” was used to describe the situation between the clamp support and pipeline when adding different pressures. Moreover, the stiffness normal to the fictitious layer and the stiffness parallel to the fictitious layer were taken as material parameters to achieve the situation between clamp support and pipeline. According to experimental results, when the torque increases, the reflection coefficients will decrease with increasing frequency. The reflection coefficients are about 0.08 to 0.02. By the result of experiment and simulation, one can know that when adding torque on the clamp support increases, the reflection coefficient will decrease. In addition, the author also prove that if we change the stiffness parallel to the fictitious layer material factor, then the T(0,1) guided wave will be more sensitive by its action of particle motion.
目次 Table of Contents
目錄 …………………………………………………………………………i
表目錄 ……………………………………………………………………iii
圖目錄 ……………………………………………………………………iv
中文摘要 ……………………………………………………………………vii
英文摘要 ……………………………………………………………………viii
第一章 緒論 ………………………………………………………………1
1.1前言 ……………………………………………………1
1.2文獻回顧 ……………………………………………………3
1.3 研究方法 ……………………………………………………7
第二章 基本理論……………………………………………………………12
2.1導波於圓管中傳遞之波動方程式………………………………12
2.1.1縱向模態…………………………………………………15
2.1.2扭矩模態…………………………………………………15
2.1.3撓曲模態…………………………………………………15
2.2頻散曲線………………………………………………………16
2.3波形結構………………………………………………………18
2.4波形轉換………………………………………………………19
2.5弱界面之薄層模型……………………………………………20
第三章 實驗架構與模擬設定………………………………………………31
3.1實驗儀器設備……………………………………………………31
3.1.1實驗管件規格……………………………………………34
3.1.2實驗設定與架構…………………………………………35
3.2模擬設定…………………………………………………………36
3.2.1ANSYS有限元素軟體……………………………………36
3.2.2激發T(0,1)模態……………………………..……………38
3.2.3負載與求解…….…………………………………………39
3.2.4模擬T(0,1)傳經夾持式支撐架之波傳情形………..……40
第四章模擬與實驗之結果分析與討論………………………………………53
4.1實驗結果……………………………………………………… 53
4.2實驗結果討論 …………………………………………………54
4.3模擬結果 ……………………………………………………56
4.4虛擬層不同材料參數之設定(KT改變).……….……………..57
4.5模擬結果討論 ………………………………………………58
第五章 結論與建議 …………………………………………………………79
5.1結論 ……………………………………………………………79
5.2未來展望………………………………………………………...80
參考文獻 ……………………………………………………………………81

表目錄
表1.1 工業界現行主要之管線檢測法其原理與適用性…………………10
表3.1 模擬之材料參數設定………………………………………………43
表4.1 模擬之虛擬層各頻率反射係數,KL為8.6×109 Pa/mm,KT為
6.6×109 Pa/mm……………………………………………………60
表4.2 模擬之虛擬層各頻率反射係數,KL為8.6×109 Pa/mm,KT為
12×109 Pa/mm……………………………………………………60


圖目錄
圖1.1 六吋碳鋼管群波速度圖…………………………………………11
圖1.2 三吋碳鋼管波型結構,(a)70 kHz,L(0,2),(b)55 kHz,T(0,1)……11
圖2.1 應用導波技術檢測管路缺陷示意圖………………………………24
圖2.2 無限長圓管(內徑為a,外徑為b)…………………………………24
圖2.3 不同n值之節點位移分佈………………………………………24
圖2.4 圓管上縱向模態波傳模式……………………………………25
圖2.5 圓管上扭矩模態波傳模式………………………………………25
圖2.6 圓管上撓曲模態波傳模式……………………………………25
圖2.7 六吋管中不同頻率的L(0,2)模態傳遞1.5 m訊號圖………………26
圖2.8 六吋碳鋼管相位速度頻散曲線…………………………………27
圖2.9 六吋碳鋼管群波速度頻散曲線…………………………………27
圖2.10 70 kHz L(0,2)模態之波形結構……………………………………28
圖2.11 T(0,1)模態之波形結構……………………………………………28
圖2.12 不連續面引發波式轉換示意圖……………………………………29
圖2.13 彈性波傳經分層結構物之示意圖………………………………29
圖2.14 波傳之質點陣動方向與假想彈簧之關係圖………………………30
圖2.15 分層結構與虛擬層示意圖…………………………………………30
圖3.1 GUL公司環狀陣列探頭(6吋管及8吋管)…………………44
圖3.2 訊號處理器(Wavemaker SE16)…………………………………44
圖3.3 Wave Pro……………………………………………………………45
圖3.4 Wave Pro回波訊號示意圖…………………………………………45
圖3.5 法蘭之回波訊號圖…………………………………………………46
圖3.6 焊道之回波訊號圖………………………………………………46
圖3.7 彎管之回波訊號圖…………………………………………………46
圖3.8 缺陷之回波訊號圖…………………………………………………47
圖3.9 實驗管件尺寸與探頭安裝位置圖…………………………………47
圖3.10 探頭安裝圖…………………………………………………………48
圖3.11 探頭安裝完成圖……………………………………………………49
圖3.12 施加扭力於夾持式支撐架示意圖…………………………………50
圖3.13 施加周向負載於邊界上..…………………………………………50
圖3.14 管線與夾持式支撐架之整體模型圖………………………………51
圖3.15 夾持式支撐架之模型………………………………………………51
圖3.16 虛擬層模型…………………………………………………………52
圖4.1 無扭力於夾持式支撐架,20 kHz之實驗(a)、0階(b)、1階(c)訊號圖…………………………………………………………………..61
圖4.2 無扭力於夾持式支撐架,25 kHz之實驗(a)、0階(b)、1階(c)訊號圖…………………………………………………………………….62
圖4.3 無扭力於夾持式支撐架,28 kHz之實驗(a)、0階(b)、1階(c)訊號圖……………………………………………………….…………63
圖4.4 無扭力於夾持式支撐架,32 kHz之實驗(a)、0階(b)、1階(c)訊號圖……………………………………………………………..……64
圖4.5 施加扭力30 in-lb於夾持式支撐架,20 kHz之實驗(a)、0階(b)、1階(c)訊號圖…………………………………………………………65
圖4.6 施加扭力30 in-lb於夾持式支撐架時,25 kHz之實驗(a)、0階(b)、1階(c)訊號圖……………………………………………………66
圖4.7 施加扭力30 in-lb於夾持式支撐架時,28 kHz之實驗(a)、0階(b)、1階(c)訊號圖………………………………………………………67
圖4.8 施加扭力30 in-lb於夾持式支撐架時,32 kHz之實驗(a)、0階(b)、1階(c)訊號圖…………………………………..................................68
圖4.9 施加扭力70 in-lb於夾持式支撐架時,20 kHz之實驗(a)、0階(b)、1階(c)訊號圖………………………………………………………69
圖4.10 施加扭力70 in-lb於夾持式支撐架時,25 kHz之實驗(a)、0階(b)、1階(c)訊號圖………………………………………………………..70
圖4.11 施加扭力70 in-lb於夾持式支撐架時,28 kHz之實驗(a)、0階(b)、1階(c)訊號圖……………………………………………………..…71
圖4.12 施加扭力70 in-lb於夾持式支撐架時,32 kHz之實驗(a)、0階(b)、1階(c)訊號圖………………………………………………………72
圖4.13 不同磅數施加於夾持式支撐架之反射係數(支撐架/左端法蘭)…73
圖4.14 32 kHz B處之0階時域圖,KL為3.15×1011 Pa/mm、KT為0.9×1011 Pa/mm………………………..……………………………………74
圖4.15 28 kHz B處之0階時域圖,KL為3.15×1011 Pa/mm、KT為0.9×1011 Pa/mm……………………………………………………………75
圖4.16不同頻率模擬結果,KL為8.6×109 Pa/mm,KT為6.6×109 Pa/mm…76
圖4.17 18 kHz之0階訊號回波圖…………………………………………77
圖4.18 32 kHz之0階訊號回波圖…………………………………………77
圖4.19 18 kHz之0階訊號回波圖..…..……………………………………78
圖4.20 32 kHz之0階訊號回波圖…………………………………………78
參考文獻 References
1. J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
2. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
3. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
4. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
5. J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
6. J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
7. J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
8. A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
9. R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustica, Vol. 17, pp. 218-222, 1966.
10. R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustica, Vol. 17, pp. 317-329, 1972.
11. D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
12. W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
13. G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
14. G. M. Light, N. R. Joshi and Soung-Nan Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, pp. 494, Vol. 44, 1986.
15. W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
16. S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, Nov. pp. 3-6, 1996.
17. H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
18. J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, Feb., 1998.
19. J.J. Ditri, J.L. Rose, "Excitation of Guided Elastic Wave Modes in Hollow Cylinders by Applied Surface Tractions", Journal of Applied Physics, Vol. 72, No.7, 1992.
20. H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
21. J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
22. J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
23. J. Li and J. L. Rose, “Angular-Profile Tuning of Guided Waves in Hollow Cylinders Using a Circumferential Phased Array,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 49, pp. 1720-1729, 2002.
24. T. Hayashi, K. Kawashima, Z. Sun, J. L. Rose, “Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method,” Journal of Acoustical Society of America, Vol. 113, pp. 1241-1248, 2002.
25. D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
26. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics, Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
27. M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
28. P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
29. M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The s0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
30. O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the s0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” Journal of the Acoustical Society of America, Vol. 112, No. 6, Dec., pp. 2589-2601, 2002.
31. D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-, 1995.
32. D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
33. D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
34. M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
35. D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” Journal of Apply Mechanic, Vol. 65, pp. 635-641, 1998.
36. D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” Journal of Apply Mechanic, Vol. 65, pp. 649-656, 1998.
37. A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G.. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E Int., Vol. 37, No. 3, pp.167-180, 2004.
38. A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” Journal of the Acoustical Society of America, Vol. 114, No. 2, pp. 611-625, 2003.
39. R. Seifried, L. Jacobs, and J. Qu, “Propagation of guided waves in adhesive bounded components,” NDT & E Int. 37, 317-328, 2002.
40. B. Hosten and M. Castaings, “Finite elements methods for modeling the guided waves propagation in structures with weak interface,” Journal of the Acoustical Society of America, 117(3), 1108-1113, March 2005.
41. M. Schoenberg, “Elastic wave behavior across linear slip interface,” Journal of the Acoustical Society of America, 68(5), 1516-1521, 1980
42. B. W. Drinkwater, R.S. Dwyer-Joyce, P. Cawley, “A study of the interaction between ultrasound and a partially contacting solid-solid interface,” Proc. R. Soc. Lond. A, Vol. 452, pp. 2613-2628, 1996
43. I. A. Viktorov, Rayleigh and Lamb Waves – Physical Theory and Applications, New York : Plenum Stress, 1967.
44. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
45. B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
46. Tirupathi R. Chandrupatla, “Introduction to finite elements in engineering,” 3rd edition, Prentice Hall, Upper Saddle River, New Jersey 07458, 2002.
47. Wavemaker Pipe Screening System User Manual and Course Notes, UK, Guided Ultrasonics Ltd., 2001.
48. 李傑弘,導波經焊接管鞋之波式轉換現象,國立中山大學機械與機電工程研究所碩士論文,中華民國95年7月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.142.146
論文開放下載的時間是 校外不公開

Your IP address is 18.188.142.146
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code