Responsive image
博碩士論文 etd-0831107-150425 詳細資訊
Title page for etd-0831107-150425
論文名稱
Title
彎管對導波波傳遞之影響
The Effect of the Elbow Pipe to the Guided Waves
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-06
繳交日期
Date of Submission
2007-08-31
關鍵字
Keywords
導波、彎管、非破壞檢測
elbow, NDT, guided wave
統計
Statistics
本論文已被瀏覽 5745 次,被下載 0
The thesis/dissertation has been browsed 5745 times, has been downloaded 0 times.
中文摘要
本研究主要目的了解彎管對導波波傳之影響,彎管是現場管路系統中常見的的特徵之一,在實際檢測上,當訊號傳遞通過彎管時會有波式轉換現象的發生,造成訊號的非對稱性提高,增加檢測的困難度。
本研究的內容包括應用有限元素之振動分析求解4種不同彎曲半徑之彎管頻散曲線,4種彎曲半徑分別為:1.0 m、0.6 m、0.4 m、0.2 m,並且利用波傳模擬與實驗檢測來驗證彎管頻散曲線的正確性。研究發現,彎管有著與直管相似的頻散曲線,其中彎管中T(0,1)模態與直管T(0,1)模態頻散最為相似,研究也發現,當彎曲半徑越大,彎管的頻散曲線會越接近直管。雖然彎管與直管有著相似的頻散曲線,但是因為彎管幾何形狀之因素,會造成彎管同一圓周截面上的各節點所接收波傳訊號會有時間延遲(Time Delay)以及波形失真(Distortion)之效應,因而發生波式轉換之現象。另由本研究的實驗中得知,雖然位於彎管後方之特徵其訊號因為波式轉換的原因使得回波訊號的非對稱性提高,但是並不會造成回波訊號位置與實際位置之間有所差異。
對於特殊形狀之管線,在實際檢測上會有著較高的複雜性,如能應用振動分析求解該管線之頻散曲線,對於檢測上有著實質的幫助。
Abstract
In this study, the most part is acquainted with the effect of elbow pipe to the guided wave. Elbow pipes were most seen feature in work environment. It was difficult for inspection that the anti-symmetric of signal increased when it passed the elbow pipe by happening mode conversion. The study content includes the using modal solution of the finite element method to solve the dispersion curve of four different bend radius of elbow pipe, they were : 1.0 m, 0.6 m, 0.4 m and 0.2 m. Therefore, by using simulation of wave propagation and experiment to verify dispersion curve of bend pipe were accuracy. This study reveals that, the dispersion curve of elbow pipe is similar to that of straight pipe, and T(0,1) mode in the elbow pipe is most similar with it in straight pipe. Thus, the dispersion curve in elbow pipe and straight pipe were similar, but the effect of geometry of elbow pipe will make the symmetrical incident signal time delay and wave front will distortion, and then it will cause mode conversion.
According to the experiment of this study, although the signal of feature behind the elbow pipe caused by mode conversion will make anti-symmetry of reflection signal increase, it still won’t make shift between reflection signal location and real feature location. It is very difficult and complex for inspecting the particular geometry pipe. If we can use the modal analysis of finite element method to solve the dispersion curve of particular geometry pipe, the inspection can be improve.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.3研究方法 8
第二章 基本理論 12
2.1導波在圓管中傳播的波動方程式 12
2.1.1縱向模態 15
2.1.2扭矩模態 15
2.1.3撓曲模態 16
2.2頻散曲線 17
2.3波形結構 19
2.4波式轉換 20

第三章 模擬設定 28
3.1 ANSYS有限元素軟體 28
3.2有限元素振動分析模型之設定 29
3.2.1振動分析之直管有線元素模型設定 29
3.2.2振動分析之彎管有線元素模型設定 33
3.2.3暫態分析之導波波傳模擬設定 34
第四章 實驗架設 43
4.1 實驗設備儀器 43
4.2實驗步驟 47
第五章 結果與討論 55
5.1應用有限元素分法振動分析求解頻散曲線之結果 55
5.1.1直管頻散曲線之結果與討論 55
5.1.2彎管頻散曲線之結果與討論 56
5.2導波波傳模擬之結果與分析 58
5.3實驗結果與分析 61
5.4彎管波式轉換之討論 62
第六章 結論與未來展望 80
6.1結論 80
6.2未來展望 83
參考文獻 84
參考文獻 References
1. J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
2. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
3. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
4. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
5. A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
6. L. Rayleigh, “The Problem of the Whispering Gallery,” in Scientific Papers, Cambridge University Press, Cambridge, Vol. 5, pp. 617–620 , 1912.
7. H. Weinberg, and R. Burridge, “Horizontal Ray Theory for Ocean Acoustics,” J. Acoust. Soc. Am., 55, pp. 63–79 , 1974.
8. G. Liu and J. Qu, “Guided Circumferential Waves in a Circular Annulus,” J. Appl. Mech., 65, pp. 424–430 , 1998.
9. G. Liu, and J. Qu, “TransientWave Propagation in a Circular Annulus,” J. Acoust. Soc. Am., 104, pp. 1210–1220, 1998.
10. P. Wilcox, “Lamb Wave Inspection of Large Structures Using Permanently Attached Transducers,” Ph.D. thesis, University of London, 1998.
11. M. Beard, “Guided Wave Inspection of Embedded Cylindrical Structures,” Ph.D. thesis, University of London, 2002.
12. J. Harris, “Rayleigh Wave Propagation in Curved Waveguides,” Wave Motion, 36, pp. 425–441, 2002.
13. D. Gridin, R. V. Craster, J. Fong, and M. J. S. Lowe, “The High- Frequency Asymptotic Analysis of Guided Waves in a Circular Elastic Annulus,” Wave M tion, 38, pp. 67–90, 2003.
14. L. Gavric, “Computation of Propagative Waves in Free Rail Using Finite Element Technique,” J. Sound Vib., 185, pp. 531–543, 1995.
15. P. Wilcox, M. Evans, O. Diligent , M. Lowe, and P. Cawley, “Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with Arbitrary Cross Section,” in D. Thompson and D. Chimenti, eds., Review of Progress in Quantitative NDE, American Institute of hysics, New York, pp.203–210, 2002.
16. P. Demma, Cawley, M. Lowe and B. Pavlakovic, “The Effect of Bends on the Propagation of GuidedWaves in Pipes”, ASME, Vol. 127, AUGUST 2005, pp.328-335
17. D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
18. W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
19. G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
20. G. M. Light, N. R. Joshi and Soung-Nan Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, pp. 494, Vol. 44, 1986.
21. W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
22. S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
23. H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
24. J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
25. J.J. Ditri, J.L. Rose, "Excitation of Guided Elastic Wave Modes in Hollow Cylinders by Applied Surface Tractions", J. of Applied Phys., Vol. 72, No. 7, 1992.
26. H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
27. J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
28. J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
29. J. Li and J. L. Rose, “Angular-Profile Tuning of Guided Waves in Hollow Cylinders Using a Circumferential Phased Array,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 49, pp. 1720-1729, 2002.
30. T. Hayashi, K. Kawashima, Z. Sun, J. L. Rose, “Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method,” Journal of Acoustical Society of America, Vol. 113, pp. 1241-1248, 2002.
31. D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
32. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics, Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
33. M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
34. P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
35. M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The s0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
36. O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the s0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” J. Acoust. Soc. Am., Vol. 112, No. 6, December, pp. 2589-2601, 2002.
37. D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-, 1995.
38. D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
39. D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
40. M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
41. D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” J. Appl. Mech., Vol. 65, pp. 635-641, 1998.
42. D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” J. Appl. Mech., Vol. 65, pp. 649-656, 1998.
43. A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G.. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E Int, Vol. 37, No. 3, pp.167-180, 2004.
44. A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” J. Acoust. Soc. Am., Vol. 114, No. 2, August, pp. 611-625, 2003.
45. C. Aristegui, , P. Cawley and M. L. S. Lowe, “Reflection and mode conversion of guided waves at bends in pipes,” Review of Progress in Quantitative NDE, Vol 19, DO Thompson and DE Chimenti (eds), American Institute of Physics, pp209-216, 2000.
46. I. A. Viktorov, Rayleigh and Lamb Waves – Physical Theory and Applications, New York : Plenum Stress, 1967.
47. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
48. B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
49. Tirupathi R. Chandrupatla, Introduction to finite elements in engineering,1987.
50. Singiresu S. RAO, The finite element method in engineering,1991.
51. Wavemaker Pipe Screening System User Manual and Course Notes, UK, Guided Ultrasonics Ltd., 2001.
52. 劉晉奇與褚晴暉,有限元素分析與ANSYS的工程應用,滄海書局,中華民國 95年5月
53. 李傑弘,導波經焊接管鞋之波式轉換現象,國立中山大學機械與機電工程研究所碩士論文,中華民國95年7月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.192.3
論文開放下載的時間是 校外不公開

Your IP address is 3.137.192.3
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code