Responsive image
博碩士論文 etd-0831109-151248 詳細資訊
Title page for etd-0831109-151248
論文名稱
Title
鍶摻雜鈷酸釤固態氧化物燃料電池陰極之製備及特性研究
Preparation and characterization of Sm0.5Sr0.5CoO3 cathodes for intermediate temperature solid oxide fuel cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
208
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-08-25
繳交日期
Date of Submission
2009-08-31
關鍵字
Keywords
鍶摻雜鈷酸釤
Sm0.5Sr0.5CoO3, SOFC
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
本研究以靜電輔助超音波熱解法(Electrostatic assisted ultrasonic spray pyrolysis, EAUSP)、靜電噴塗法(Electrostatic spray deposition)與靜電紡絲法(Electro-spinning)製備鍶摻雜鈷酸釤(Sm0.5Sr0.5CoO3, SSC)陰極於氧化釓摻雜氧化鈰(Gd0.2Ce0.8O2, GDC)基材,以進行微結構與電化學性能之研究。
在EAUSP製程中,XRD結果顯示,鍛燒後的SSC氧化物膜具單相結晶結構,屬於鈣鈦礦結構(perovskite),沒有第二相的產生。藉由SEM表面形貌觀察可知,改變外加電壓與鍍膜溫度對於鍍膜表面形貌有大幅度的影響。多孔柱狀具備層狀結構的SSC厚膜在400 oC的鍍膜溫度、10 kV的外加電壓與600秒的鍍膜時間下可製備得到,此種鍍膜型貌也是第一次被發表,並且藉由系統性地變化鍍膜參數,對鍍膜的成長機制加以討論。以EAUSP法得道之SSC陰極搭配GDC電解質進行交流阻抗分析(AC impedance measurement)結果顯示,以EAUSP法製備之SSC陰極相較於傳統製程陰極,在電化學性能表現上相當具有競爭力,在600 oC的操作溫度下,最低的介面阻抗(Area specific resistance, ASR)可達0.204 Ωcm2.
此外,ESD法亦應用於製備SSC薄膜於GDC基材上。XRD結果顯示,SSC薄膜在鍛燒後呈現鈣鈦礦結晶結構。ESD法所得之SSC薄膜表面形貌,受到鍍膜參數變化的影響甚大。因此,溶液流率、鍍膜溫度與鍍膜時間將系統性地變化,以得到鍍膜參數與鍍膜表面形貌的相關性,相關之鍍膜成長機制亦藉由鍍膜參數的變化進行討論。對以ESD法製備之SSC薄膜進行交流阻抗分析,結果顯示,在350 oC的鍍膜溫度與2.0 ml/hr的溶液流率條件下,所得到的多孔網狀具連續性的SSC薄膜具有最佳的電化學性能表現,在600 oC的操作溫度下,最低的ASR值可達0.09 Ωcm2,相較於其他以純SSC作為陰極之研究可知,此ASR值已是最佳表現。
在本研究中,SSC奈米線首次藉由靜電紡絲法得到,在鍛燒處理後,此奈米絲直徑介於40至90奈米,藉由超音波震盪後則可得到SSC奈米纖維。XRD與TEM結果顯示,SSC奈米纖維具多晶結構,其結晶屬於斜方(orthorhombic)鈣鈦礦結構。SSC奈米纖維藉由模版印刷法(Stencil printing method)於GDC基材上形成奈米纖維電極(nano-fiber electrode),並進行交流阻抗分析。結果顯示,ASR值在600 oC的操作溫度下可達0.06 Ωcm2,此値為目前已發表之以純SSC作為單相陰極或SSC複合電解質所形成的複合陰極之最佳性能表示。
Abstract
Deposition of Sm0.5Sr0.5CoO3 (SSC) films on Gd-doped ceria (GDC) substrates by electrostatic assisted ultrasonic spray pyrolysis (EAUSP) was demonstrated in this study. The XRD results indicate that crystalline phase with perovskite structure was obtained in the calcined films. SEM observations indicate that applied voltage and deposition temperature have profound effects on the film morphology in EAUSP method. Stronger applied voltage results in the smoother film while higher deposition temperature results in rougher film. A unique thick porous film with column structure is obtained for the first time by EAUSP method using a deposition temperature of 400 oC, an applied voltage of 10 kV and a deposition time of 600 seconds. The growth mechanism of the unique porous thick film is also discussed in this study. The area specific resistance (ASR) values of SSC cathode with this unique porous columnar structure are comparable to that obtained by conventional sample preparation routes. For example, an ASR value of 0.204 Ω•cm2 at 600 oC is obtained in this work.
Electrostatic spray deposition (ESD) method was also employed to deposit SSC films as cathode on GDC substrates in this study. Crystalline SSC with perovskite structure was obtained in the calcined films. Deposition parameters including deposition temperature, precursor flow rate and deposition time were systematically varied to obtain the SSC films with various morphologies. The best film structure for high electrochemical performance is a porous reticular structure obtained under a precursor solution flow rate of 2.0 ml/hr and a deposition temperature of 350 oC. The growth mechanism of this reticular structure is established based on the examination of film evolution in a series of films obtained with different deposition times. The minimum ASR value of the porous reticular SSC cathode fabricated by ESD is 0.09 Ω•cm2 at 600 oC.
SSC nano-wires were successfully synthesized by electro-spinning method. The diameter of calcined nano-wires ranges from 40 to 90 nm. The TEM results indicate that the calcined (800oC/2hr) SSC nano-wires are polycrystalline with an orthorhombic perovskite structure. SSC nano-fibers were then obtained from the SSC nano-wires through an ultrasonic vibration of 15 minutes. Electrodes of SSC nano-fiber on GDC substrate were then prepared by slurry printing method. The ASR values of SSC nano-fiber electrodes are extremely low and the minimum ASR value is 0.06 Ω•cm2 at 600 oC.
目次 Table of Contents
List of Figures……………………………………………………………………....…v
List of Tables………………………………………………………………………...xiv
摘要………………………………………………………………………….…….xvi
Abstract…………..………………………………………………………………xviii
Chapter 1 Introduction……………………………………………………………..….1
1.1 Fuel cell……………………………………………………………………..…1
1.2 Solid oxide fuel cell, SOFC……………………………………………………4
1.3 Mechanism of cathode reaction………………………………………………..7
1.4 The objective of this study………………………………………………….11
Chapter 2 Literature review…………………………………………………………..12
2.1 Spray pyrolysis……………………………………………………….………12
2.2 Electrostatic spray deposition (ESD) process……………………………….14
2.2.1 Atomization of precursor solution…………………………………….14
2.2.2 Aerosol transport……………………………………………………….18
2.2.3 Decomposition of droplets…………………………………………….18
2.3 Electrostatic assisted ultrasonic spray pyrolysis (EAUSP) process……….…23
2.3.1 Ultrasonic spray pyrolysis (USP) process……………………………...23
2.3.2 Electrostatic assisted ultra sonic spray pyrolysis (EAUSP)……………24
2.4 The electro-spinning process………………………………………………..27
2.5 The kinectics of electrode reaction in fuel cell………………………………31
2.5.1 The internal current loss………………………………………………32
2.5.2 The activation polarization……………………………………………..34
2.5.3 The concentration polarization…………………………………………36
2.5.4 The ohmic polarization…………………………………………………37
2.6 Electrochemical impedance spectroscopy (EIS)………………………..……38
2.6.1 The principles of EIS………………………………………………...…38
2.6.2 Equivalent circuit of a cell……………………………………………...40
2.6.3 Constant phase element, CPE…………………………………………..45
2.7 The crystal structure of Sm0.5Sr0.5CoO3……………………………………47
2.8 The conductivity of Sm0.5Sr0.5CoO3………………………………………….51
2.9 The performance of Sm0.5Sr0.5CoO3 cathode………………………….……..53
Chapter 3 Experimental procedure………………………………………………….55
3.1 Experimental procedure…………………………………………………….55
3.2 Procedure of EAUSP method…………………………………………….......57
3.2.1 The precursor solution preparation for EAUSP…………………….….58
3.2.2 EAUSP set-up..........................................................................................58
3.2.3 EAUSP method parameters………………………………………….…60
3.2.4 Characterizations of EAUSP film………………………………...……60
3.2.5 The density measurement of GDC pellet………………………………62
3.3 Procedure of ESD method………………………………………………...….64
3.3.1 The precursor solution preparation for ESD…………………………..65
3.3.2 ESD set-up………………………………………………………….…..67
3.3.3 Deposition of SSC films by ESD method………………………….…..68
3.3.4 Characterizations of ESD film………………………………………....69
3.4 Procedure of electro-spinning method……………………………………..73
3.4.1 The precursor solution preparation for electro-spinning……………..74
3.4.2 Electro-spinning set-up………………………………………….……..75
3.4.3 The electro-spinning parameter…………………………………..…….76
3.4.4 Characterizations of SSC nano-fibers………………………………..76
Chapter 4 Results…………………………………………………………….………79
4.1 The EAUSP results…………………………………………………………..79
4.1.1 The density measurement and observation of GDC substrate…………79
4.1.2 The TGA results of SSC precursor solution………………………….81
4.1.3 The XRD results of SSC films on GDC pellets…………………….….82
4.1.4 SEM morphology………………………………………………………85
4.1.5 AC impedance analysis……………………………………………….102
4.2 The ESD results……………………………………………………………..108
4.2.1 SSC on SDC substrate………………………………………………..108
4.2.1.1 XRD results……………………………………………….…….108
4.2.1.2 SEM results……………………………………………….…….110
4.2.1.2 AC impedance………………………………………………..…114
4.2.2 SSC on GDC substrate………………………………………………..116
4.2.2.1 XRD results……………………………………………………..116
4.2.2.2 SEM results……………………………………………………118
4.2.2.3 AC impedance………………………………………………..…130
4.3 Sm0.5Sr0.5CoO3 nano-fibers prepared by electro-spinning method………....136
4.3.1 XRD results……………………………………………………..…….136
4.3.2 SEM results…………………………………………………………138
4.3.3 TEM results…………………………………………………….……..142
4.3.4 AC impedance results…………………………………………..…….145
Chapter 5 Discussions…………………………………………………………….147
5.1 SSC deposited on GDC pellets by EAUSP method……………………..….147
5.1.1 XRD results……………………………………………………….…..147
5.1.2 SEM observations…………………………………………………….147
5.1.3 AC impedance results…………………………………………………155
5.2 SSC deposited on SDC or GDC pellets by ESD method……………...……158
5.2.1 XRD results……………………………………………………...……158
5.2.2 SEM observations………………………………………………….…158
5.2.3 AC impedance results……………………………………………...….164
5.3 SSC nano-fibers produced by electro-spinning…………………….……….167
Chapter 6 Conclusions………………………………………………………….…..170
6.1 EAUSP method………………………………………………………….….170
6.2 ESD method…………………………………………………………...……170
6.3 Electro-spinning method……………………………………………………171
Reference……………………………………………………………….......……….172

















List of Figures
Figure 1.1.1 The scheme of fuel cell operations……………………………….……2
Figure 1.2.1 The operating principle of SOFC………………………………...……4
Figure 1.2.2 The conductivities of common electrolytes [11]………………….…...6
Figure 1.3.1 The mechanism of ORR in SOFC cathode.[14]………………………7
Figure 1.3.2 The schematic diagram of a porous LSM electrode on a YSZ electrolyte.[14]…………………………………………………...……8
Figure 1.3.3 Schematic diagrams of (a) a single-phase mixed conductor and (b) a composite conductor used as SOFC cathode.[14]……………………..9
Figure 1.3.4 The schematic diagram of TPB. [14]……………………………...…10
Figure 2.2.1 The scheme of electrostatic spray……………………………………14
Figure 2.2.2 Various modes of electrostatic spray [34]………………………...….15
Figure 2.2.3 The scheme of Taylor cone…………………………………………..16
Figure 2.2.4 The growth mechanism proposed by Choy [40]………………..……19
Figure 2.2.5 The four types of film morphologies from Chen el al [35]…….…….20
Figure 2.2.6 The growth model of unique porous LiCoO2 films [41]………..……21
Figure 2.2.7 Sketch of film formation proposed by Beckel [43]…………………..22
Figure 2.3.1 The photographs of the fountain jets formation and breakup taken at different time, (a) t=0 s; (b) t=0.8 s; (c) t=1.3s; (d) t=2.8s [45], (e) The schematic diagram of the ultrasonic atomization……………….……24
Figure 2.3.2 The photographs of the contraction of mist flow. (a) Without applying extra high voltage, (b) Applying 10 kV high voltage. [50]………..…26
Figure 2.4.1 The schematic diagram of electro-spinning………………….…….28
Figure 2.4.2 The schematic of the trajectory of a jet in electrospinning process [61]…………………………………………………………………...29
Figure 2.4.2 Plots showing the dependence of nano-fiber diameter on various processing parameters: (A) concentration of PVP; (B) electrical field strength; (C) feeding rate of the ethanol solution; and (D) concentration of titanium isopropoxide [62]……………………………………….30
Figure 2.5.1 The diagram of a single cell with 1.2V theoretical voltage. [66]…….32
Figure 2.5.2 The schematic diagram of Tafel plots…………………………….….35
Figure 2.6.1 The Bode plot (a) and Nyquist plot (b) of impedance data presentation method………………………………………………………………..39
Figure 2.6.2 (a) The Randless equivalent circuit of an electrochemical cell.
(b) Subdivision of Zf into Rs, and Cs, or Rct and Zw…………………………….....40
Figure 2.6.3 Impedance plane of (a) low-frequency limit, (b) high-frequency limit and (c) the real system……………………………………………..…44
Figure 2.6.4 The equivalent circuit at high frequency limit……………………….45
Figure 2.6.5 The Nyquist plots of (a) only CPE and (b) a CPE parallel with a resistor……………………………………………………………..…46
Figure 2.7.1 A schematic diagram of ideal ABO3 Perovskite oxide. (a=b=c, α=β=γ=90O)……………………………………………………….….47
Figure 2.7.2 Crystal structure and oxygen transport in mixed conducting perovskite ABO3-δ. (a) Oxygen vacancies in ABO3-δ. (b) The hopping routes of oxygen vacancies between BO6 octahedrons [14]…………………...49
Figure 2.7.3 The linear thermal expansion coefficients of Sm0.5Sr0.5Co1-xFexO3 [78]…………………………………………………………………...50
Figure 2.8.1 SSC conductivity as a function of temperature [72]………......……..51
Figure 3.1.1 The experimental procedures of this study………………………….56
Figure 3.2.1 The experimental procedure for SSC films by EAUSP method…………………………………………………………..……57
Figure 3.2.2 The schematic diagram of EAUSP set-up……………………………59
Figure 3.2.3 The preparation of cross-sectional sample for SEM observation……61
Figure 3.2.4 The construction of symmetrical cells…………………………...…..62
Figure 3.3.1 The procedure of ESD method for SSC film deposition……….…….65
Figure 3.3.2 The schematic diagram of ESD set-up…………………………….…68
Figure 3.3.3 The construction of symmetrical cell with double-layer electrodes....71
Figure 3.3.4 The construction of symmetrical cell with SSC single-layer electrod.72
Figure 3.4.1 The procedure of electrospinning for SSC nano-wires and electrode.73
Figure 3.4.2 The schematic diagram of electrospinning set-up……………..……..75
Figure 3.4.3 The schematic diagram of SSC symmetrical cell with nano-fiber electrodes………………………………………………………….….78
Figure 4.1.1 The surface morphology of the GDC substrate……………………..80
Figure 4.1.2 The TGA analysis results of (a) weight loss and (b) differential data versus temperature………………………………………………...….81
Figure 4.1.3 The XRD pattern of SSC films on GDC substrates with a precursor concentration of 0.4 M, a deposition temperature of 400 oC, a deposition time of 180 seconds and different applied voltages (from 6 kV to 14 kV)……………………………………………………….…82
Figure 4.1.4 XRD patterns of SSC film on GDC substrates with a precursor concentration of 0.4 M, an applied voltage of 10 kV, a deposition time of 180 seconds and different deposition temperatures (from 350 to 540 oC)………………………………………………………………….....83
Figure 4.1.5 XRD patterns of SSC film on GDC substrate with a precursor concentration of 0.4 M, an applied voltage of 10 kV and a deposition temperature of 350 oC and different deposition times (from 5 to 300 seconds)………………………………………………………………84
Figure 4.1.6 The SSC film before calcinations……………………………………86
Figure 4.1.7 The SSC film after calcinations……………………………………...86
Figure 4.1.8 The EDS analysis results of calcined SSC films: (a) The analyzed spot for the EDS; (b) The EDS spectrum and the compositions of the film……………………………………………………………….…..87
Figure 4.1.9 Surface morphology of SSC films obtained under different applied voltages: (a) 6 kV; (b) 10 kV; (c) 12 kV; (d) 14 kV. The working distance, carrying gas flow rate, deposition temperature, deposition time and metal ion concentration are fixed at 3.0 cm, 1 l/min., 400 oC , 180 seconds and 0.4 M, respectively for all films……………………90
Figure 4.1.10 The cross-section micrographs of SSC films obtained under different applied voltages: (a) 6 kV; (b) 10 kV; (c) 12 kV; (d) 14 kV. The working distance, carrying gas flow rate, deposition temperature, deposition time and metal ion concentration are fixed at 3.0 cm, 1 l/min., 400 oC , 180 seconds and 0.4 M, respectively for all films…………………………………………………………………..91
Figure 4.1.11 Surface morphology of SSC films obtained under different deposition temperatures: (a) 350 oC; (b) 400 oC; (c) 450 oC; (d) 500 oC. The working distance, carrying gas flow rate, deposition time, applied voltage and metal ion concentration are fixed at 3.0 cm, 1 l/min., 180 seconds, 10 kV and 0.4 M, respectively for all films………………...94
Figure 4.1.12 The cross-section micrographs of SSC films obtained under different deposition temperatures: (a) 350 oC; (b) 400 oC; (c) 450 oC; (d) 500 oC. The other deposition parameters shown below are fixed during deposition. The working distance, carrying gas flow rate, deposition time, applied voltage and metal ion concentration are fixed at 3.0 cm, 1 l/min., 180 seconds, 10 kV and 0.4 M, respectively for all films……95
Figure 4.1.13 Surface morphology of SSC films obtained under different deposition times: (a) 30 seconds; (b) 120 seconds; (c) 180 seconds; (d) 300 seconds; (e) 600 seconds. The working distance, carrying gas flow rate, deposition temperature, applied voltage and metal ion concentration are fixed at 3.0 cm, 1 l/min., 400 oC , 10 kV and 0.4 M, respectively for all films……………………………………………………….…..98
Figure 4.1.14 The cross-section micrographs of SSC films obtained under different deposition times: (a) 30 seconds; (b) 120 seconds; (c) 180 seconds; (d) 300 seconds; (e) 600 seconds. The working distance, carrying gas flow rate, deposition temperature, applied voltage and metal ion concentration are fixed at 3.0 cm, 1 l/min., 400 oC, 10 kV and 0.4 M, respectively for all films…………………………………………….100
Figure 4.1.15 The surface and cross-section morphologies of the unique thick film. (a) The close-up micrograph of the column surface; (b) and (c) are the cross-section micrographs of columns; (d) The close-up of the cross-section of a column…………………………………………...101
Figure 4.1.16 The impedance spectra of samples of applied voltage series measured at 600 oC…………………………………………………………….102
Figure 4.1.17 The Arrhenius plot of ASR derived from impedance spectra as illustrated in Figure 4.1.16………………………………………….103
Figure 4.1.18 The impedance spectra of SSC/GDC/SSC cells with SSC films obtained at different deposition temperatures (measured temperature: 600 oC)………………………………………………………………104
Figure 4.1.19 The Arrhenius plot of ASR for samples of deposition temperature series………………………………………………………………105
Figure 4.1.20 The impedance spectra of SSC/GDC/SSC cells with SSC films obtained at different deposition temperature (measured at 700 oC)………………………………………………………………...…106
Figure 4.1.21 The Arrhenius plot of ASR for samples obtained with different deposition times……………………………………………………..107
Figure 4.2.1 The XRD patterns of SSC films obtained with different precursor flow rates on SDC substrates……………………………………….…….109
Figure 4.2.2 Surface morphology of SSC films obtained with different precursor flow rates: (a) 1.0 ml/hr for 300 minutes; (b) 2.0 ml/hr for 150 minutes; (c) 3.0 ml/hr for 100 minutes; (d) 5.0 ml/hr for 60 minutes. The working distance, deposition temperature and metal ion concentration are fixed at 3.0 cm, 300 oC and 0.01 M, respectively for all films…………………………………………………………………112
Figure 4.2.3 The cross-section morphology of, (a) the sprayed SSC film obtained with 5.0 ml/hr for 60 minutes on SDC pellet; (b) The stencil-printed SSC/SDC composite film on SDC pellet…………………….……..113
Figure 4.2.4 The impedance spectra of symmetrical cells with single- or double-layer SSC cathodes measured at 600 oC……………………114
Figure 4.2.5 The Arrhenius plot of electrode ASRs for symmetrical cells with single- or double-layer SSC cathodes on the SDC pellets……….…115
Figure 4.2.6 The XRD patterns of calcined SSC films on GDC deposited with a precursor concentration of 0.01 M, a deposition temperature of 350 oC, a deposition time of 60 minutes and different flow rates (from 0.5 to 4.0 ml/hr)………………………………………………………...….117
Figure 4.2.7 The XRD patterns of calcined SSC films on GDC deposited with a precursor concentration of 0.01 M, a precursor flow rate of 2.0 ml/hr, a deposition time of 60 minutes and different deposition temperatures (from 250 to 450 oC)……………………………………………….117
Figure 4.2.8 The XRD patterns of calcined SSC films on GDC deposited with a precursor concentration of 0.01 M, a precursor flow rate of 2.0 ml/hr, a deposition temperature of 350 oC and different deposition times (from 30 to 120 minutes………………………………………………...…118
Figure 4.2.9 Surface morphology of SSC films obtained under different flow rates: (a) 0.5 ml/hr for 240 minutes; (b) 1.0 ml/hr for 120 minutes; (c) 2.0 ml/hr for 60 minutes; (d) 4.0 ml/hr for 30 minutes; (e) 8.0 ml/hr for 15 minutes. The working distance, deposition temperature and metal ion concentration are fixed at 3.0 cm, 350 oC and 0.01 M, respectively for all films……………………………………………………………...120
Figure 4.2.10 Surface morphology of SSC films obtained at different deposition temperatures: (a) 250 oC; (b) 300 oC; (c) 350 oC; (d) 400 oC; (e) 500 oC. The working distance, precursor flow rate, deposition time and metal ion concentration are fixed at 3.0 cm, 2.0 ml/hr., 60 minutes and 0.01 M, respectively for all films……………………………………….123
Figure 4.2.11 Surface morphology of SSC films obtained with different deposition times: (a) 5; (b) 10; (c) 15; (d) 20; (e) 40; (f) 60; (g) 120 and (h) 180 minutes. The working distance, precursor flow rate, deposition temperature and metal ion concentration are fixed at 3.0 cm, 2.0 ml/hr., 350 oC and 0.01 M, respectively for all films…………………….127
Figure 4.2.12 The cross-section micrographs of SSC films obtained with different deposition times: (a) 5; (b) 10; (c) 20; (d) 40; (e) 120 and (f) 180 minutes. The working distance, precursor flow rate, deposition temperature and metal ion concentration are fixed at 3.0 cm, 2.0 ml/hr, 350 oC and 0.01 M, respectively for all films……………………..129
Figure 4.2.13 The impedance spectra at 600 oC of SSC/GDC/SSC cells with SSC cathodes obtained with different flow rates………………..………131
Figure 4.2.14 The Arrhenius plot of ASR for SSC cathodes obtained with different flow rates……………………………………………………………131
Figure 4.2.15 The impedance spectra at 600 oC of SSC/GDC/SSC cells with SSC cathodes obtained with different deposition temperature…………..133
Figure 4.2.16 The Arrhenius plot of ASR for samples of deposition temperature series……………………………………………………………..….133
Figure 4.2.17 The impedance spectra of SSC/GDC/SSC cells with SSC cathodes obtained with different deposition times (measured at 600 oC)………………………………………………………………..….135
Figure 4.2.18 The Arrhenius plot of ASR for SSC cathodes deposited with different deposition times…………………………………………………..…135
Figure 4.3.1 The XRD spectrum of (a) calcined SSC fibers; (b) calcined SSC fibers on GDC pellets……………………………………………………136
Figure 4.3.2 XRD patterns of SSC fibers and printed SSC fibers on GDC pellets, respectively. (a) Stencil printed SSC fibers on GDC pellets, (b) Only SSC fibers…………………………………………………………...137
Figure 4.3.3 The SEM micrographs of SSC belts obtained by electro-spinning: (a) As-spun SSC belt; (b) SSC belts after heat treatment of 500 oC/2hr; (c) SSC belts after calcination of 800 oC/2hr……………………..…….140
Figure 4.3.4 (a) The SEM micrographs of SSC nano-fibers after a calcination of 800 oC/2hr and an ultrasonic vibration of 15 minutes; (b) The SEM micrographs of SSC electrode made of SSC nano-fibers……….…..141
Figure 4.3.5 (a) The TEM bright field image of SSC nano-fibers; (b) The diffraction pattern of (a); (c) The SAD pattern from the grain circled by the dotted line in (a); (d) The simulated diffraction pattern of SSC……………143
Figure 4.3.6 (a) The TEM bright field image of SSC nano-fiber; (b) The high resolution image of the area circled by the dotted line in (a)……….144
Figure 4.3.7 The AC impedance spectra of SSC//GDC//SSC cell with SSC nano-fiber electrodes at the temperature range of 550-700oC…………………………………………………………146
Figure 4.3.8 The Arrhenius plots of ASR for (a) SSC nano-fiber cathode; (b) SSC cathode obtained by EAUSP………………………………………..146
Figure 5.1.1 Thermophorecsis effect at 3 mm distance to the substrate [96]….…148
Figure 5.1.2 The relationship between film thickness and deposition time for SSC films…………………………………………………………………152
Figure 5.1.3 The growth model of SSC films obtained by EAUSP method. (a) flight of droplets; (b) spreading of droplets; (c) preferential landing; (d) film growth…………………………………………………………….…154
Figure 5.1.4 Interfacial ASR values for SSC films obtained with a deposition temperature of 400°C and an applied voltage of 10 kV………….…157
Figure 5.2.1 The growth process of the reticular film. (a) spreading of droplets; (b) formation of ring-like hollows; (c) preferential landing effect; (d) growth of ridges and forming of reticular structure……………..….163
List of Tables
Table 1.1 Types of fuel cell [4]………………………………………………………..3
Table 2.1 The impedances of circuit elements……………………………………….41
Table 2.7.1 The cell parameters and the thermal expansion coefficients of Sm1-xSrxCoO3 [72]………………………………………………………..50
Table 2.9.1 The ASR values of Sm0.5Sr0.5CoO3 based cathode…………….………..54
Table 3.2.1 The chemicals and powder used in EAUSP………………………...…..58
Table 3.3.1 The chemicals and powder used in ESD………………………………66
Table 3.3.1 The chemicals of slurry used in stencil printing……………………….71
Table 3.4.1 The chemicals employed in precursor solution for electro-spinning method…………………………………………………………………....74
Table 3.4.2 The parameters of electro-spinning…………………………...…………76
Table 4.1.1 The densities of GDC pellets………………………………………..…..79
Table 4.1.2 The ASR values at 600 oC obtained from Figure 4.1.16……………….103
Table 4.1.3 The ASR for samples of deposition temperature series at 600 oC……105
Table 4.1.4 The ASR of samples of deposition time series measured at 600 oC…...107
Table 4.2.1 The deposition times employed in flow rate series………………….…108
Table 4.2.2 The ASR values obtained from Figure 4.2.4 at the measurement temperature of 600 oC………………………………………………...…115
Table 4.2.3 The deposition time employed in flow rate series…………………..…116
Table 4.2.4 The ASR values for samples of flow rate series at 600 oC………...…..130
Table 4.2.5 The ASR values at 600 oC obtained from Figure 4.2.15……………….132
Table 4.2.6 The ASR values of samples of deposition time series at 600 oC………134
Table 4.3.1 The comparison of the d-spacing of JCPDS #53-0112 and that measured from Figure 4.3.5c………………………………………………………142
Table 4.3.2 The ASR values of SSC nano-fiber cathodes at different temperatures………………………………………………………….…145
Table 5.3.1 Average and standard deviation of wire diameters: as-spun and calcined wires………………………………………………………………….....167
參考文獻 References
Reference
1. W. R. Grove, “On Voltaic Series and the Combination of Gases by Platinum”, Philosophical Magazine and Journal of Science, 14 (1839) 127-130.
2. S. Thomas and M. Zalbowitz, “Fuel Cells-Green Power”, Los Alamos National Laboratory, USA, (2001).
3. EG&G Technical Services, Inc “Fuel cell handbook 7th edition”, US department of energy, Morgantown, WV., (2004).
4. S. Basu, “Recent Trends in Fuel Cell Science and Technology”, Springer, NY., (2007).
5. B. C. H. Steele and A. Heinzel, “Materials for fuel-cell technologies”, Nature, 414 (2001) 345-352.
6. T. Fukui, S. Ohara, M. Naito and K. Nogi, “Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles”, Journal of Power Sources, 110 (2002) 91-95.
7. M. Marinsek, K. Zupan and J. Macek, “Preparation of Ni-YSZ composite materials for solid oxide fuel cell anodes by the gel-precipitation method”, Journal of Power Sources, 86 (2000) 383-389.
8. A. S. Carrillo, T. Tagawa, S. Goto, “Application of mist pyrolysis method to preparation of Ni/ZrO2 anode catalyst for SOFC type reactor”, Materials Research Bulletin, 36 (2001) 1017-1027.
9. S. T. Aruna, M. Muthuraman and K. C. Patiil, “Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells”, Solid State Ionics, 111 (1998) 45-51.
10. J. Ovenstone. J. S. White and S. T. Misture, “Phase transitions and phase decomposition of La1−xSrxCoO3−δ in low oxygen partial pressures”, Journal of Power Sources, 181 (2008) 56-61.
11. H. Inada and H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) 1-16.
12. Y. Liu, S. Zha and M. Liu, “Nanocomposite Electrodes Fabricated by a Particle-Solution Spraying Process for Low-Temperature SOFCs”, Chemistry of Materials, 16 (2004) 3502-3506.
13. Y. Liu, W. Rauch, S. Zha and M. Liu, “Fabrication of Sm0.5Sr0.5CoO3−δ- Sm0.1Ce0.9O2−δ cathodes for solid oxide fuel cells using combustion CVD”, Solid State Ionics, 166 (2004) 261-268.
14. S. B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes”, Chemical Reviews, 104 (2004) 4791-4843.
15. Y. Takeda, R. Kanno, M. Noda, Y. Tomida and O. Yamamoto, “Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia”, Journal of the Electrochemical Society, 134 (1987) 2656-2661.
16. B. C. H. Steele, “Survey of materials selection for ceramic fuel cells II. Cathodes and anodes”, Solid State Ionics, 86-88 (1996) 1223-1234.
17. W. Prellier, A. Fouchet, B. Mercey, Ch. Simon and B. Raveau, “Laser ablation of Co:ZnO films deposited from Zn and Co metal targets on (0001) Al2O3 substrates”, Applied Physics Letters, 82 (2003) 3490-3492.
18. B. R. Weinberger and R. B. Garber, “Titanium dioxide photocatalysts produced by reactive magnetron sputtering”, Applied Physics Letters, 66 (1995) 2409-2411.
19. Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. K. Tang, P. Yu and G. K. L. Wong, “Growth of ZnO Thin Film by Laser MBE: Lasing of Exciton at Room Temperature”, Physica Status Solidi (b), 202 (1997) 669-672.
20. D. Perednis and L. Gauckler, “Thin Film Deposition Using Spray Pyrolysis”, Journal of Electroceramics, 14 (2005) 103-111.
21. Z. Tang, Y. Xie H. Hawthorne and D. Ghosh, “Sol-gel processing of Sr0.5Sm0.5CoO3 film”, Journal of Power Sources, 157 (2006) 385-388.
22. Y. Lu, R. Ganguli, C. A. Dreqien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang and J. I. Zink, “Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating”, Nature, 389 (1997) 364-368.
23. Y. Natsume and H. Sakata, “Zinc oxide films prepared by sol-gel spin-coating”, Thin Solid Films, 372 (2000) 30-36.
24. J. M. Mochel, “Electrically conducting coatings on glass and other ceramic bodies”, US patent 2,564,707 (1951).
25. J. E. Hill and R. R. Chamberlin, “Process for making conductive film”, US patent 3,148,084 (1964).
26. C. L. Chang and B. H. Hwang, “Microstructure and Electrochemical Characterization of Sm0.5Sr0.5CoO3 Films as SOFC Cathode Prepared by the Electrostatic-Assisted Ultrasonic Spray Pyrolysis Method”, International Journal of Applied Ceramic Technology, 5 (2008) 582-588.
27. C. L. Chang, C. S. Hsu and B. H. Hwang, “Unique porous thick Sm0.5Sr0.5CoO3 solid oxide fuel cell cathode films prepared by spray pyrolysis”, Journal of Power Sources, 179 (2008) 734-738.
28. H. H. Afify, S. A. Nasser and S. E. Demian, “Influence of substrate temperature on the structural, optical and electrical properties of ZnO thin films prepared by spray pyrolysis”, Journal of Materials Science: Materials in Electronics, 2 (1991) 152-156.
29. H. Gourari, M. Lumbreras, R. V. Landschoot and J. Schoonman, “Elaboration and characterization of SnO2-Mn2O3 thin layers prepared by electrostatic spray deposition”, Sensors and Actuators B, 47 (1998) 189-193.
30. H. Gourari, M. Lumbreras, R. V. Landschoot and J. Schoonman, “Electrode nature effects on stannic oxide type layers prepared by electrostatic spray deposition”, Sensors and Actuators B, 58 (1999) 365-369.
31. G. Korotchenkov, V. Brynzari and S. Dmitriev, “SnO2 films for thin film gas sensor design”, Materials Science and Engineering B, 63 (1999) 195-204.
32. M. Cloupeau and B. Prunet-Foch, “Electrostatic spraying of liquids: Main functioning modes”, Journal of Electrostatics, 25 (1990) 165-184.
33. G. I. Taylor, “Disintegration of Water Drops in an Electric Field”, Proceedings of the Royal Society of London. Series A, 280 (1964) 383-397.
34. A. Jaworek and A. T. Sobczyk, “Electrospraying route to nanotechnology: An overview”, Journal of Electrostatics, 66 (2008) 197-219.
35. C. Chen, E. M. Kelder, P. J. J. ven der Put and J. Schoonman, “Morphology control of thin LiCoO2 films fabricated using the electrostatic spray deposition (ESD) technique”, Journal of Materials Chemistry, 6 (1996) 765-771.
36. W. Balachandran, P. Miao and P. Xiao, “Electrospray of fine droplets of ceramic suspensions for thin-film preparation”, Journal of Electrostatics, 50 (2001) 249-263.
37. A. M. Gana-Calvo, J. Davila and A. Barrero, “Current and Droplet Size in the Electrospraying of Liquids: Scaling Laws”, Journal of Aerosol Science, 28 (1997) 249-275.
38. J. Zeleny, “Instability of electrified liquid surfaces”, Physics Review, 10 (1917) 1-6.
39. B. Vonnegut, R. L. Neubaruer, “Production of monodisperse liquid particles by electrical atomization”, Journal of Colloid Scoence, 7 (1952) 616-622.
40. K. L. Choy and B. Su, “Growth behavior and microstructure of CdS thin films deposited by an electrostatic spray assisted vapor deposition (ESAVD) process”, Thin Solid Films, 388 (2001) 9-14.
41. C. H. Chen, E. M. Kelder and J. Schoonman, “Unique Porous LiCoO2 Thin-Layers Prepared by Electrostatic Spray Deposition”, Journal of Mateirals Science, 31 (1996) 5437-5442.
42. J. L. Shui, Y. Yu and C. H. Chen, “Deposition conditions in tailoring the morphology of highly porous reticular films prepared by electrostatic spray deposition (ESD) technique”, Applied Surface Science, 253 (2006) 2379-2385.
43. D. Beckel, A. Dubach, A. R. Studart and L. J. Gauckler, “Spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3-δ thin film cathodes” Journal of Electroceramic, 16 (2006) 221-228.
44. A. Smith, J. M. Laurent, D. S. Smith, J. P. Bonnet and R. R. Clemente, “Relation between solution chemistry and morphology of SnO2-based thin films deposited by a pyrosol process”, Thin Solid Films, 266 (1995) 20-30.
45. D. M. Kirpalani and F. Toll, “Revealing the physicochemical mechanism for ultrasonic separation of alcohol–water mixtures”, Journal of Chemical Physics, 117 (2002) 3874-3877.
46. O. K. Eknadiosyants and Y. Y. Bogusalvskii, “Physical mechanism of the acoustic atomization of a liquid”, Soviet Physical Acoustic, 15 (1969) 14-21.
47. R. J. Lang, “Ultrasonic Atomization of Liquids”, Journal of the Acoustical Society of America, 34 (1962) 6-8.
48. J. H. Lee and S. J. Park, “Preparation of Spherical SnO2 Powders by Ultrasonic Spray Pyrolysis”, Journal of the American Ceramic Society, 76 (1993) 777-780.
49. W. Siefert, “Corona spray pyrolysis: A new coating technique with an extremely enhanced deposition efficiency”, Thin Solid Films, 120 (1984) 267-274.
50. C. S. Hsu and B. H. Hwang, “Microstructure and properties of the La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathodes prepared by electrostatic assisted ultrasonic spray pyrolysis (EAUSP) method”, Journal of the Electrochemical Society, 153 (2006) A1478-1483.
51. S. H. Yu, M. Antonietti, H. Colfen and J. Hartmann, “Growth and self-assembly of BaCrO4 and BaSO4 nanofibers toward hierarchical and repetitive superstructures by polymer- controlled mineralization reactions”, Nano Letters, 3 (2003) 379-382.
52. G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”, Science, 295 (2002) 2418-2421.
53. C. M. Zelenski and P. K. Dorhout, “Template Synthesis of Near-Monodisperse Microscale Nanofibers and Nanotubules of MoS2”, Journal of the American Chemical Society, 120 (1998) 734-742.
54. C. R. Martin, “Membrane-Based Synthesis of Nanomaterials”, Chemistry of Materials, 8 (1996) 1739-1746.
55. G. Che, B. B. Lakshmi, C. R. Martin and E. R. Fisher, “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method”, Chemistry of Materials, 10 (1998) 260-267.
56. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers”, Journal of Electrostatics, 35 (1995) 151-160.
57. D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrspinning”, Nanotechnology, 7 (1996) 216-223.
58. Z. Sun, E. Zussman, A. L. Yarin and J. H. Wendorff and A. Greiner, “Compound Core-Shell Polymer Nanofibers by Co-Electrospinning”, Advanced Materials, 15 (2003) 1929-1932.
59. W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies”, Nanotechnology, 17 (2006) R89-R106.
60. Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, Composites Science and Technology, 63 (2003) 2223-2253.
61. D. H. Reneker and A. L. Yarin, “Electrospinning jets and polymer nanofibers”, Polymer, 49 (2008) 2387-2425.
62. D. Li and Y. Xia, “Fabrication of tatania nanofibers by electrospinning”, Nano Letters, 3 (2003) 555-560.
63. E. Formo, E. Lee, D. Campbell and Y. Xia, “Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications”, Nano Letters, 8 (2008) 668-672.
64. D. Li, J. T. McCann and Y. Xia, “Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes”, Journal of the American Ceramic Society, 89 (2006) 1861-1869.
65. S. C. Singhal and K. Kendall, “High temperature solid oxide fuel cells: Fundamentals, Design and Appications”, Elsevier. Kidlington, UK., (2003).
66. J. Larminie and A. Dicks, “Fuel cell systems explained”, 2nd, (2003)
67. I. Riess, “Theoretical Treatment of the Transport Equations for Electrons and Ions in a Mixed Conductor”, Journal of the Electrochemistry Society, 128 (1981) 2077-2081.
68. A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, Second Edition, John Wiley $ Sons, Inc. (2001).
69. E. Barsoukov and J. R. Macdonald, “Impedance Spectroscopy Theory, Experiment, and Applications”, Second Edition, John Wiley $ Sons, Inc. (2005).
70. R. Rodgers, Research solution and resource, http://www.consultrsr.com/resources/eis/
71. F. D. Bloss, “Crystallography and Crystal Chemistry-an introduction”, Holt, Rinehart and Winston, Inc. (1971).
72. H. Y. Tu, Y. Takeda, N. Imanishi and O. Yamamoto, “Ln1−xSrxCoO3(Ln = Sm, Dy) for the electrode of solid oxide fuel cells”, Solid State Ionics, 100 (1997) 283-288.
73. J. W. Kang, K. H. Ryu and C. H. Yo, Bulletin of Korean Chemical Society, 16 (1995) 600-603.
74. K. Yoshii, H. Abe and A. Nakamura, “Magnetism and transport of Ln0.5Sr0.5CoO3 (Ln = Pr, Nd, Sm and Eu)”, Materials Research Bulletin, 36 (2001) 1447-1454.
75. T. Suzuki, P. Jasinski, V. Petrovsky, F. Dogan and H. Anderson, “The microstructure effect on the electrical and optical properties of undoped and Sr-doped SmCoO3 thin films”, Solid State Ionics, 175 (2004) 437-439.
76. S. Yang, T. He and Q. He, “Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells”, Journal of Alloys and Compounds, 450 (2008) 400-404.
77. H. Lv, B. Y. Zhao, Y. J. Wu G. Sun, G. Chen and K. A. Hu, “Effect of B-site doping on Sm0.5Sr0.5MxCo1−xO3−δ properties for IT-SOFC cathode material (M = Fe, Mn)”, Materials Research Bulletin, 42 (2007) 1999-2012.
78. H. Lv, Y. J. Wu, B. Huang, B. Y. Zhao and K. A. Hu, “Structure and electrochemical properties of Sm0.5Sr0.5Co1−xFexO3−δ cathodes for solid oxide fuel cells”, Solid State Ionics, 177 (2006) 901-906.
79. I. C. Fullarton, J. P. Jacobs, H. E. van Benthem, J. A. Kilner, H. H. Brongersma, P. J. Scanlon and B. C. H. Steele, “Study of Oxygen Ion Transport in Acceptor Doped Samarium Cobalt Oxide”, Ionics, 1 (1995) 51-58.
80. L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin and S. R. Sehlin, “Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3”, Solid State Ionics, 76 (1995) 259-271.
81. L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin and S. R. Sehlin, “Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3”, Solid State Ionics, 76 (1995) 273-283.
82. T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi and Y. Takita, “Intermediate Temperature Solid Oxide Fuel Cells Using a New LaGaO3 Based Oxide Ion Conductor”, Journal of Electrochemical Society, 145 (1998) 3177-3183.
83. S. W. Baek, J. H. Kim and J. Bae, “Characteristics of ABO3 and A2BO4 (A=Sm, Sr; B=Co, Fe, Ni) samarium oxide system as cathode materials for intermediate temperature-operating solid oxide fuel cell”, Solid State Ionics, 179 (2008) 1570-1574.
84. S. W. Baek, J. Bae and Y. S. Yoo, “Cathode reaction mechanism of porous-structured Sm0.5Sr0.5CoO3−δ and Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9 for solid oxide fuel cells”, Journal of Power Sources, 193 (2009) 431-440.
85. F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia and F. Chen, “Novel nano-network cathodes for solid oxide fuel cells”, Journal of Power Sources, 185 (2008) 13-18.
86. Z. Wang, W. Weng, K. Chen G. Shen, P. Du and G. Han, “Preparation and performance of nanostructured porous thin cathode for low-temperature solid oxide fuel cells by spin-coating method”, Journal of Power Sources, 175 (2008) 430-435.
87. T. L. Nguyen, T. Kato, K. Nozaki, T. Honda, A. Negishi, K. Kato and Y. Iimura, “Application of (Sm0.5Sr0.5)CoO3 as a Cathode Material to (Zr,Sc)O2 Electrolyte with Ceria-Based Interlayers for Reduced-Temperature Operation SOFCs”, Journal of the Electrochemical Society, 153 (2006) A1310-1316.
88. H. Lv, Y. J. Wu, B. Huang, B. Y. Zhao and K. A. Hu, “Structure and electrochemical properties of Sm0.5Sr0.5Co1−xFexO3−δ cathodes for solid oxide fuel cells”, Solid State Ionics, 177 (2006) 901-906.
89. X. Zhang, M. Robertson, S. Yick, C. Deces-Petit, E. Styles, W. Qu, Y. Xie, R. Hui, J. Roller, O. Kesler, R. Maric and D. Ghosh, “Sm0.5Sr0.5CoO3 + Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600°C”, Journal of Power Sources, 160 (2006) 1211-1216.
90. Y. Liu, S. Zha and M. Liu, “Nanostructured Electrodes for SOFCs Fabricated by Combustion Chemical Vapor Deposition (CVD)”, Advanced Materials, 16 (2004) 256-260.
91. C. Xia, W. Rauch, F. Chen and M. Liu, “Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs”, Solid State Ionics, 149 (2002) 11-19.
92. C. Xia and M. Liu, “Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing”, Solid State Ionics, 144 (2001) 249-255.
93. C. Xia, F. Chen and M. Liu, “Reduced-Temperature Solid Oxide Fuel Cells Fabricated by Screen Printing”, Electrochemical and Solid-State Letters, 4 (2001) A52-A54.
94. C. T. Lin, I. M. Huang, K. Z. Fung and M. H. Hon, “The Characterization of Oxygen Deficit Cathode Sm0.5Sr0.5Co1-xCuxO3-δ (x=0~0.3) for Intermediate Temperature-Solid Oxide Fuel Cells (IT-SOFCs)”, Journal of Materials Science and Engineering, 38 (2006) 11-17.
95. M. C. Pearce and V. Thangadurai, “Investigations of Chemical Stability of Ce0.85Ca0.05Sm0.1O1.9 with Sr-Doped ABO3 (A = La, Sm; B = Mn, Co) Using X-ray Powder Diffraction and AC Impedance”, Ionics, 14 (2008) 483-489.
96. O. Wilhelm, S. E. Pratsinis, D. Perednis and L. J. Gauckler, “Electrospray and pressurized spray deposition of yttria-stabilized zirconia films”, Thin Solid Films, 479 (2005) 121-129.
97. B. C. H. Steele, “Behaviour of porous cathodes in high temperature fuel cells”, Solid State Ionics, 94 (1997) 239-248.
98. B. C. H. Steele, “Oxygen transport and exchange in oxide ceramics”, Journal of Power Sources, 49 (1994) 1-14.
99. B. C. H. Steele, “Interfacial reactions associated with ceramic ion transport membranes”, Solid State Ionics, 75 (1995) 157-165.
100. B. C. H. Steele, “Oxygen ion conductors and their technological applications”, Materials Science and Engineering B, 13 (1992) 79-87.
101. M. Koyama, C. J. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, K. Eguchi and H. Takahashi, “The Mechanism of Porous Sm0.5Sr0.5CoO3 Cathodes Used in Solid Oxide Fuel Cells”, Journal of the Electrochemical Society, 148 (2001) A795-A801.
102. H. Fukunaga, T. Akatsuka, A. Endo, C. Wen and K. Yamada, In: S.C. Singhal and M. Dokiya, Editors, SOFC-VI, The Electrochemical Society, Pennington, PV99-19 (1999) 443-452.
103. H. Fong, I. Chun and D. H. Reneker, “Beaded nanofibers formed during electrospinning”, Polymer, 40 (1999) 4585-4592.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.10.137
論文開放下載的時間是 校外不公開

Your IP address is 3.15.10.137
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code