Responsive image
博碩士論文 etd-0831109-152837 詳細資訊
Title page for etd-0831109-152837
論文名稱
Title
體型微加工壓阻式壓力感測器之設計與製作
Design and Fabrication of Bulk Micromachined Piezoresistive Pressure Sensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-11
繳交日期
Date of Submission
2009-08-31
關鍵字
Keywords
膀胱內壓監測系統、體型與面型微加工技術、壓阻式壓力感測器
Bladder pressure detecting microsystem, Piezoresistive pressure microsensor, Bulk and surface micromachining technologies
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
本論文運用體型與面型微加工技術(Bulk & surface micromachining technologies)開發一微型壓阻式壓力感測器(Piezoresistive pressure sensor),以期能應用於可植入式人體膀胱壓力即時監測系統之中。
本研究首先使用硼離子佈植(Ion implantation)技術於N型磊晶層上方製作出壓阻材料;接著利用濃度30%及溫度為80 ℃之氫氧化鉀蝕刻溶液,以非等向性蝕刻方式在矽基板背部形成一空腔;最後再將矽基板與玻璃基板接合,以完成微型壓阻式壓力感測器之元件製作。為了得到最佳化的設計規格,本論文以薄膜變形理論與靈敏度分析理論為基礎,藉由調變元件之壓力感測薄膜面積(As)與壓阻之長/寬比(L/W),設計與製作出4種不同尺寸的微型壓阻式壓力感測器。
由特性量測結果得知,本論文所研發之壓阻式壓力感測器並感測薄膜面積為1050 × 1050 (μm2)與壓阻長/寬比為90/9 (μm/μm)時,其感測靈敏度可達最高0.0076 mV/(V*kgf/cm2),該特性足以適用於膀胱內壓感測系統之需求;同時該微型壓阻式壓力感測器之感測線性度高達99.6%,此值與商用壓力感測器比較起來毫不遜色。另一方面,經與其他實驗室的合作,已初步完成壓力感側器、控制專用集成電路(Control ASIC)與無線射頻模組(RF module)之組裝,未來將可應用於膀胱內壓監測系統。
Abstract
Utilizing the bulk and surface micromachining technologies, this thesis designed and fabricated a piezoresistive pressure microsensor for developing an in-vivo and real-time biomedical detection microsystem to monitor the uric pressure in patients’ bladder.
In this study, the main processing steps include the implantation of a moderate boron ion concentration into the N-epitaxial silicon layer to form the piezoresistors, anisotropic etching the backside silicon substrate to create a cavity by 30% KOH solution in 80°C temperature, and anodic bonding of the silicon based pressure microsensor and the hole-drilled glass sustain. To obtain the optimum design specification of the piezoresistive pressure microsensor, this study compared the characterization of the four types of devices with three different pressure sensing area (As) and two different length/width ratios (L/W) of the N-epitaxial piezoresistors.
Based on the measurement results, the highest sensitivity (0.0076mV/(V*kgf/cm2) can be achieved as the As and the L/W ratio are equal to 1050 × 1050 μm2 and 90/9 μm/μm, respectively. Such sensitivity is suitable for the application of bladder pressure detection microsystem. A very high sensing linearity (99.6%) can also be demonstrated in this research and this value approach to that of the commercial pressure sensor. On the other hand, through cooperation with another laboratory, this work has established a prototype of the uric pressure detecting microsystem by assembled with the piezoresistive pressure microsensor, a control ASIC and a radio-frequency (RF) module.
目次 Table of Contents
目 錄
摘要......................................................................................................... I
ABSTRACT............................................................................................ II
誌謝....................................................................................................... III
目錄....................................................................................................... IV
圖目錄.................................................................................................. VII
表目錄................................................................................................... XI

第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機 6
1-4 論文架構 7
第二章 微型壓阻式壓力感測器之原理介紹 8
2-1 壓力感測器之原理介紹 8
2-2 壓阻之原理介紹 11
2-3 壓力感測薄膜之理論分析 17
2-4 惠斯同電橋電路之原理介紹 19
2-5 微型壓阻式壓力感測器之靈敏度分析 21
第三章 微型壓阻式壓力感測器之設計與製作 22
3-1 微型壓阻式壓力感測器之壓力感測薄膜設計 22
3-2 微型壓阻式壓力感測器之壓阻設計 24
3-3 微型壓力感測器之光罩佈局設計 25
3-4 微型壓力感測器之製程整合 27
3-4-1 元件之製作流程 27
3-4-2 元件之製程步驟與製程參數 28
第四章 結果與討論 34
4-1 元件製作過程所遭遇的問題與解決方法 34
4-1-1 硼離子佈植製程 34
4-1-2 接觸窗製程 35
4-1-3 矽基板背部空腔蝕刻製程 37
4-1-4 矽基板-玻璃基板之陽極接合製程 ...............................43
4-2 微型壓阻式壓力感測器之量測系統說明 45
4-3 微型壓阻式壓力感測器之特性量測與分析 47
4-4 微型壓阻式壓力感測器應用於膀胱內壓即時監測微系統 55
第五章 結論與建議 58
5-1 結論 58
5-2 建議 60
參考文獻 61
附錄....................................................................................................... 64
參考文獻 References
[1] 葉楓台,“二十一世紀科技趨勢報告-奈米與微機電”,國家科學資料中心,1992。
[2] K. E. Petersen, “Silicon as a Mechanical Material,” Proceedings of the IEEE, vol. 70, no. 5, pp. 420-456, 1982.
[3] 丁志銘等,微機電系統技術與應用,國科會精密儀器發展中心,2003。
[4] C. S. Smith, “Piezoresistance effect in germanium and silicon, ” Physical Review, vol. 94, pp. 42–49, 1954.
[5] H. Guckel, and D. Burns, “Planar Processed Polysilicon Sealed Cavities for Pressure Transducers Array,” IEDM, pp. 223-225, 1984.
[6] G. S. Chung, S. Kawahito, M. Ishida, and T. Nakamura, “Novel Pressure Sensors with Multilayer SOI Structure ,” Electronics Leters, vol 26, pp. 775-777, 1990.
[7] G. B. Lee, Y. F. Gai., H. C. Wu, Y. C. Lin., J. H. Chou, J. J. Miau and C. Y. Wei, “Development of a surface-micromachined pressure sensor on a flexible substrate,” The 3rd Nano Engineering and Micro System Technology Workshop , Taiwan, May , 1999.
[8] C. L. Tsai and A. K. Henning, “Surface micromachined turbines,” Int. Conf. on Solid-State Sensors and Actuators, vol. 2, pp. 829-832 , 1997.
[9] E. Kalvesten, “The First Surface Micromachined Pressure Sensor for Cardiovascular Pressure Measurements,” IEEE, MEMS-98, pp. 574-579, 1998.
[10] S. C. Gong, “Fabrication of Pressure Sensor Using Silicon Bonding,” Sensor and Material, vol. 16, no.3, pp.119-131, 2004.
[11] S. Chen, M. Q. Zhu, B. H. Ma and W. Z. Yuan, “Design and optimization of a micro piezoresistive pressure sensor, ” Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, pp. 351-356, 2008.
[12] S. Susumu, K Shimaoka., “Surface micro machined micro diaphragm pressure sensors,” Solid-State Sensors and Actuators , Transducers’91, pp. 188-191, 1991.
[13] C. S. Smith, “Piezoresistance effect in germanium and silicon, ” Physical Review, vol. 94, pp. 42–49, 1954.
[14] K. Yamada, M. Nishihara, S. Shimada, M. Tanabe, M. Shimazeo and Y. Matsuoka “Nonlinearity of the Piezoresistance Effect of p-Type Silcon Diffused Layers”, IEEE Transactions on Electron Devices, vol. ED-29, no.1, pp. 71-77, 1982.
[15] 楊龍杰,認識微機電,滄海書局,pp.130-139,2001。
[16] S.M. Sze, “Semiconductor Sensors”, John Wiley & Sons Inc., 1994.
[17] S. P. Timoshenko and S. W.Krieger, “Theory of Plates and Shells” 2nd ed., McGraw-Hill, New York, pp. 415-420, 1970.
[18] E. Obermeier and P. Kopystynski, “Poly-silicon as a Material for Micro-sensor Applications,” Sensors and Actuators A, vol 30, pp.149-155, 1992.
[19] M. Madou, “Fundamentals of Microfabrication,” New York, CRC Press., pp. 232-258, 1997.
[20] T. N. Jackson, M. A. Tischler, and K. D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures,” IEEE Electron. Dev. Lett., vol. EDL-2, no. 2, pp. 44-45, 1981.
[21] M. H. Lee, H. Y. Lee, Y. N. Liaw and I. K. Lao, “Detailed characterization of anodic bonding process between glass and thin-film coated silicon substrates,” Sensors and Actuators A, vol. 86, pp.103-107, 2000.
[22] C. F. Jerez-Hanckes, D. Qiao and S. S. Lau, “A study of Si wafer bonding via methanol capillarity,” Materials Chemistry and Physics, vol. 77, pp. 751–754, 2002.

[23] C. C. Wang, C. C. Huang, J. S. Liou, Y. J. Ciou, I. Y. Huang, C. P. Li, Y. C. Lee and W. J. Wu, “A Mini-Invasive Long-Term Bladder Urine Pressure,” IEEE Transactions on Biomedical Circuits and System, vol. 2, no. 1, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.24.134
論文開放下載的時間是 校外不公開

Your IP address is 3.141.24.134
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code