Responsive image
博碩士論文 etd-0831110-155527 詳細資訊
Title page for etd-0831110-155527
論文名稱
Title
共生性倒立水母(Cassiopea andromeda)之光生物學研究
Study on the photobiology of a symbiotic jellyfish, Cassiopea andromeda.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-22
繳交日期
Date of Submission
2010-08-31
關鍵字
Keywords
光生物學、倒立水母
photobiology, Cassiopea andromeda
統計
Statistics
本論文已被瀏覽 5694 次,被下載 1580
The thesis/dissertation has been browsed 5694 times, has been downloaded 1580 times.
中文摘要
倒立水母(Cassiopea andromeda)(Cnidaria: Scyphozoa) 為一體內含有共生蟲黃藻(symbiotic zooxanthellae)之缽水母類,其傘部收縮運動引發水流,為水母帶來獵物並促進與外界物質交換之重要途徑,但目前對此一傘部收縮行為與異營性生活及共生關係之影響,所知極為有限。本研究除進行基本形質測量(傘徑大小、濕重與乾重)外,並探討個體大小和有無抑制光合作用對於光照與否、日週律變化、光環境之選擇差異、有無獵物與飢餓效應以及不同顏色玻璃紙覆蓋對其傘部收縮頻率變化之影響、有無共生藻之倒立水母呼吸率。研究結果顯示,個體收縮頻率隨個體增長而降低;在自然光照與餵食的條件下,收縮頻率明顯增加,黑暗狀況與持續飢餓狀態,將使其收縮頻率明顯下降。自然光照組中之水母個體,其24小時內的收縮頻率呈明顯日週率變化,但在全黑暗組中則未見此一現象。同時,本研究亦實驗估算不同個體大小之倒立水母與其水螅體之清除率變化,較大個體之清除率明顯高於小型個體,且經過DCMU(殺草劑,可抑制倒立水母之光合作用)處理之倒立水母個體其清除率明顯高於處理前個體。不同顏色玻璃紙覆蓋之各組個體並無明顯差異,但抑制光合作用後的水母在各種不同顏色玻璃紙覆蓋下,其收縮頻率皆明顯低於處理前之個體,顯示共生藻的存在與否與倒立水母之傘部收縮頻率有顯著相關。在光環境選擇上,倒立水母之碟狀體有明顯趨光行為,短時間之光強度改變時,碟狀體無明顯移動行為,且在抑制光合作用後即無明顯趨光行為。此外,抑制光合作用後之倒立水母耗氧率則明顯較未處理前之倒立水母耗氧率為高。根據上述變因對倒立水母傘部收縮頻率之影響,與其個體增長過程中清除率之變化推論,倒立水母個體發育早期可能更為依賴共生藻之光合作用以提供其生存所需之能量,且較小個體之較高傘部收縮運動頻率,亦可能有助於其個體移動至光線較為充足或獵物較多之棲地。
Abstract
The symbiotic jellyfish, Cassiopea andromeda (Cnidaria: Scyphozoa) often sit upside-down on the benthic of shallow water regions, with constant pulsation behavior of its umbrella which brought water currents flowing through its oral arms to enhance prey capture and material exchange with surrounding water. However, little is known about the influence of pulsation on its heterotrophic behavior and symbiotic relationship with endosymbiotic zooxathellae. Current study focused on the potential effects of animal size, illumination, diel cycle, prey availability and starvation on the pulsation rates of the jellyfish. Our result revealed that the pulsation rates decreased at larger animal size, absence of prey, prolonged starvation and dark environment, and vice versa. Animals receiving natural light illumination showed significant diel cycle pattern of pulsation in the 24 hr period, which is not observed in the group dark treatment. Meanwhile, we also conducted the clearance rates of the upside-down jellyfish through its ontogenetic growth, and found that the clearance rates significantly increased as they grow. Based on the results obtained from this study, its is likely that the smaller meduae might rely more on the energy provided by the symbiotic algae, and can exhibit more significant habit selecting behavior.
目次 Table of Contents
目錄
章次 頁數
中文摘要--------------------------------------------------------------------------- I
英文摘要--------------------------------------------------------------------------- III
目錄--------------------------------------------------------------------------------- IV
表目錄------------------------------------------------------------------------------ VII
圖目錄------------------------------------------------------------------------------ VIII
附表目錄--------------------------------------------------------------------------- IX
附圖目錄--------------------------------------------------------------------------- X
壹、前言----------------------------------------------------------------------------- 1
貳、材料與方法-------------------------------------------------------------------- 5
2. 1 物種取得與形質測量-------------------------------------------------- 5
2. 2 光照與食物對倒立水母個體傘部收縮頻率之影響-------------- 5
2. 3 日周律對倒立水母傘部收縮速率之影響-------------------------- 6
2. 4 自然光週期下不同光波長以及光合作用抑制與否對水母傘
部收縮速率之影響-----------------------------------------------------
6
2. 5 飢餓狀態下倒立水母傘部收縮速率之變化----------------------- 7
2. 6 個體大小以及抑制光合作用前後(DCMU處理與否)倒立水母個體對於清除綠之影響-------------------------------------------
7
2. 7 倒立水母抑制光合作用前後(DCMU處理與否)對光環境
的選擇--------------------------------------------------------------------
8
2. 8 倒立水母耗氧率實驗-------------------------------------------------- 9
2. 9 實驗結果統計分析----------------------------------------------------- 10
參、結果----------------------------------------------------------------------------- 11
3. 1 形質測量----------------------------------------------------------------- 11
3. 2光照與食物對倒立水母個體傘部收縮頻率之影響--------------- 11
3. 3 日周律對水母傘部收縮速率之影響-------------------------------- 12
3. 4 自然光週期下不同光波長以及抑制光合作用與否對水母傘
部收縮速率之影響-----------------------------------------------------
13
3. 5飢餓狀態下水母傘部收縮速率之變化------------------------------ 13
3. 6 個體大小以及抑制光合作用前後(DCMU處理與否)倒立
水母個體對於清除率之影響-----------------------------------------
14
3. 7 倒立水母抑制光合作用前後(DCMU處理與否)對光環境
之選擇--------------------------------------------------------------------
14
3. 8 耗氧率實驗之進行----------------------------------------------------- 15
肆、討論----------------------------------------------------------------------------- 16
伍、結論----------------------------------------------------------------------------- 24
陸、參考文獻----------------------------------------------------------------------- 25
表------------------------------------------------------------------------------------ 30
圖------------------------------------------------------------------------------------ 32
附錄--------------------------------------------------------------------------------- 43
附圖--------------------------------------------------------------------------------- 47




















表目錄
表次 頁數
1. 不同顏色的玻璃紙下,經DCMU處理前後的倒立水母整日的收
縮頻率值-----------------------------------------------------------------------
28
2. Cassiopea andromeda與其他不同種類之水母耗氧率之比較--------- 31



















圖目錄
圖次 頁數
1. Cassiopea andromeda傘徑大小與濕重之關係--------------------------- 32
2. Cassiopea andromeda傘徑大小與乾重之關係--------------------------- 33
2. 不同條件下(光線有無與餵食與否),Cassiopea andromeda傘徑
大小與平均傘部收縮次數之關係-----------------------------------------
34
3. A:自然光照和全黑暗中,Cassiopea andromeda於一天內傘部收縮
次數變化之比較。B: 24小時內,自然光照組之環境光照度變化----
35
5. 飢餓效應(全黑暗且無獵物環境)對Cassiopea andromeda傘部收
縮頻率之影響-----------------------------------------------------------------
36
6. Cassiopea andromeda不同大小個體之清除率與光合作用抑制與否
之關係---------------------------------------------------------------------------
37
7. Cassiopea andromeda全黑暗中抑制光合作用前後傘部收縮頻率--- 38
8. Cassiopea andromeda在不同光梯度環境下之時序分佈變化--------- 39
9. Cassiopea andromeda於光合作用抑制後,在不同光梯度環境下之
時序分佈變化------------------------------------------------------------------
40
10. Cassiopea andromeda改變光環境後,全光區→全遮光區、半遮光
區、全遮光區→全光區,各區個體數之變化關係圖------------------
41
11. Cassiopea andromeda不同個體大小與呼吸耗氧率之關係---------- 42
附表目錄
1. Cassiopea andromeda傘徑大小與乾、濕重之關係---------------------- 43
2. 光照與獵物存在與否條件下Cassiopea andromeda之傘部收縮頻
率之影響-----------------------------------------------------------------------
44
3. Cassiopea andromeda傘部收縮速率之日周律變化--------------------- 46



















附圖目錄
圖次 頁數
1. Cassiopea andromeda之生活史--------------------------------------------- 47
2. 共生於Cassiopea andromeda體內之蟲黃藻----------------------------- 48
3. Cassiopea andromeda對不同光梯度選擇之實驗設備------------------ 49
參考文獻 References
呂明毅,張文炳,李展榮,方力行,1999。仙女水母 (Cassiopea andromeda)的棲地調查與人工飼養之研究。第七屆珊瑚礁生物研討會摘要。1999 年9月 9~10 日,P. 7。
Arai, M. N., 1997. A functional biology of scyphozoan. Chapman & Hall, London, UK. 316pp.
Berrill, M., 1962. The biology of three New England stauromedusae, with a description of a new species. Canadian Journal of Zoology 40: 1249-1262.
Blanquet, R. S., & G. P. Riordan, 1981. An ultrastructural study of the subumbrellar musculature and desmosomal complexes of Cassiopea xamanacha (Cnidaria: Scyphozoa). Transactions of the American Microscopical Society 100: 109-119.
Blanquet, R. S. & M. A. Phelan, 1987. An unusual blue mesogleal protein from the mangrovejellyfish Cassiopea xamachana. Marine Biology 94: 423-430.
Cates, N., 1975. Productivity and organic consumption in Cassiopea and Condylactus. Journal of Experimental Marine Biology and Ecology 18: 55-59.
Cates, N. & J. J. A. McLaughlin, 1976. Differences of ammonia metabolism in symbiotic and aposymbiotic Condylactus and Cassiopea spp. Journal of Experimental Marine Biology and Ecology 21: 1-5.
Drew, E. A., 1972. The biology and physiology of alga-invertebrate symbioses. I. Carbon fixation in Cassiopea sp. at Aldabra Atoll. Journal of Experimental Marine Biology and Ecology 9: 65-69.
Fancett, M. S. & G. P. Jenkins, 1988. Predatory impact of scyphomedusae on ichthyoplankton and other zooplankton in Port Phillip Bay. Marine Biology Vol. 116, pp.63-77.
Hoffmann, D. K. & B. P. Kremer, 1981. Carbon metabolism and strobilation in Cassiopea andromeda (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates. Marine Biology 65: 25-33.
Hyman, 1940. Observations and experiments on the physiology of medusae. Biological Bulletin (Woods Hole) 79: 282-296.
Kramp, P. L., 1961. Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom, 40, 1-471.
Kikinger, R., 1992. Cotylorhiza tuberculata (Cnidaria: Scyphozoa) – Life history of a stationary population. Marine Ecology 13: 333-362.
Kremer, P., J. Costello, J. Kremer & M. Canino, 1990. Significance of photosynthetic endosymbionts to the carbon budget of the scyphomedusa Linuche unguiculata. Limnology and Oceanography 35(3): 609-624.
Larson, R. J., 1987. First report of the little-known scyphomedusa Drymonema Dalmatinum in the Caribbean sea, with notes on its biology. Bulletin of marine science 40(3): 437-441.
Loeb, M. J. and R. S. Blanquet, 1973. Feeding behavior in polyps of the Chesapeake Bay sea nettle, Chrysaora quinquecirrha (Desor, 1848) Biological Bulletin (Woods Hole) 145: 150-158.
Malej, A. and Vukovic, A., 1986. Some data on the metabolism of Pelagia noctiluca in the Gulf of Trieste. Nova Thalassia, 8 Suppl. 2, 107-111.
Malej, A., 1991. Rates of metabolism of jellyfish as related to body weight, chemical composition and temperature, in UNEP:Jellyfish Blooms in the Mediterranean. Proceedings of the II Workshop on Jellyfish in the Mediterranean Sea, Map Technical Reports Series No. 47, UNEP, Athens, pp. 253-259.
Malej, A., J. Faganeli & J. Pezdic, 1993. Stable isotope and biochemical fractionation in the marine pelagic food chain: the jellyfish Pelagia noctiluca and net zooplankton. Marine Biology (Berlin), 116, 565-570.
Maleh, A., 1989b. Respiration and excretion rates of Pelagia noctiluca (Semaeostomae, Scyphozoa), in Proceedings of the Twenty First European Marine Biology Symposium, (eds R.Z. Klekowski, E. Styczynska-Jurewicz, and L. Falkowski), Institute of Oceanology, Polish Academy of Sciences, Gdansk, pp. 107-113.
Marshalonis, D., & J. L. Pinckney, 2007. Respiration rates of dominant hydromedusae in the North Inlet tidal estuary during winter and summer. Journal of Plankton Research 29(12):1031-1040.
Matthew, J. M., & J. Jason, 2003. The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita), Journal of Experimental Biology 206: 4125-4137.
Mayer, A. G., 1906. Rhythmical pulsation of scyphomedusae. Yearbook, Carnegie Inst. Wash. 4: 120-123.
Mayer, A. G., 1910. Medusae of the World III, The Scyphomedusae. Carnegie Institute of Washington Publication, Washington.
McCloskey, L. R., L. Muscatine & F. P. Wilkerson, 1994. Daily Photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Marine Biology 119: 13-22.
Orton, J. H., 1922. The mode of feeding of the jelly-fish, Aurelia aurita, on the smaller organisms in the plankton. Nature (London) 110: 178-179.
Romanes, G. J., 1877. Further observations on the locomotor system of
medusae. Philos. Trans. R. Soc. London. 167:659-752.
Schuyler, Q., & B. K. Sullivan, 1997. Light responses and diel migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms , Journal of Plankton Research 19 (10):1417-1428.
Southward, A. J., 1995. Observations on the ciliary currents of the jellyfish Aurelia aurita. Journal of the Marine Biological Association of the United Kingdom 34: 210-216.
Svoboda, A., 1978. In situ monitoring of oxygen production and respiration in Cnidaria with and without zooxanthellae. In “Physiology and Behaviour of Marine Organisms”, eds. D. S. McLusky and A. J. Berry, Pergamon Press, Oxford, pp. 75-82.
Verde, E. A. & L. R. McCloskey, 1998. Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Marine Ecology Progress Series 168: 147-162.
Welsh, D. T., R. J. K. Dunn & T. Meziane, 2009. Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635: 351-362.
Widder, E. A., B. H. Robison, K. R. Reisenbichler & S. H. D. Haddock, 2005. Using red light for in situ observations of deep-sea fishes. Deep-Sea Research I 52:2077–2085.
Yakovleva, K.K., 1964. Intensity of respiration of some Black Sea Medusae.Trudy Sevastopol’skoi Biologicheskoi Stantsii, 17, 364-367. In Russian; Fisheries Research Board of Canada Translation Series no. 2218.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code