Responsive image
博碩士論文 etd-0831110-175723 詳細資訊
Title page for etd-0831110-175723
論文名稱
Title
二次沉積遮罩層應用於奈米結構之研究
Study on the influence of twice deposited mask layer of nano-structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-21
繳交日期
Date of Submission
2010-08-31
關鍵字
Keywords
蝕刻、奈米結構、聚焦離子束、感應耦合式電漿
nano-structure, ICP, FIB, dry etch
統計
Statistics
本論文已被瀏覽 5628 次,被下載 0
The thesis/dissertation has been browsed 5628 times, has been downloaded 0 times.
中文摘要
FIB 是目前台灣學術界製作100nm 以下結構的有效又經濟方法。過去的FIB 奈米製造的圖案還不理想,本研究以二次沉積遮罩層來改善奈米結構輪廓垂直度。單一遮罩層用以圖案轉移,蝕刻過程中,可能因參數設定不當或是機台限制等因素,導致轉移的圖案變形,最常見的情況是,頂部呈現尖突狀,側壁傾角過大而不垂直,為了改善上列情況,實驗設計多沉積一層遮罩層保護側壁,以減緩側壁蝕刻。
機台使用上是以濺鍍機台沉積第一層遮罩層鉻,以聚焦離子束直寫蝕刻圖案於其上,蝕刻的地方裸露出下層的矽,再以濺鍍機台沉積第二層遮罩層:二氧化矽,二氧化矽層直接於表面輪廓覆蓋上去,再以感應耦合式電漿機台蝕垂直蝕刻掉二氧化矽層的頂部及底部,結構側壁的二氧化矽則被保留下來保護側壁及提高深寬比。最後再同樣以感應耦合式電漿機台蝕刻矽,這一部分探討到蝕刻氣體的差異,將氯基及氟基氣體蝕刻的差異性作一個比較。參數最佳化後,成功\進行線寬61nm 深度310nm 之奈米結構的製造。
Abstract
FIB is currently the economic methods to produce nano-structure below 100nm. In the past, FIB manufactures nano-structure patterns also unsatisfactory. In this study, the influence of twice deposited mask layer on the aspect ratio of nano-structure and verticality of side wall contour was discussed. The single mask layer is used for pattern transfer. Pattern distortion may occur during etching due to several factors like improper parameter setting, limitation of machine table, etc. The most common situations are aciculate and salient shape on the top and angle of slope which is too big to be vertical. In order to improve above-mentioned situations, a mask layer of multi-deposition was designed to protect the side wall so that it could retard etching. In addition to modifying verticality of side wall, the aspect ratio could be raised indirectly because the second deposition had reduced the interval between patterns. In the aspect of using machine table, the first mask layer, chromium, which was deposited by the sputtering machine. And the etching pattern was directly written on the first mask layer by focused ion beam. The silicon was uncovered at etched place, and then the second mask layer, silica (SiO2), which was deposited by the sputtering machine. The surface contour was directly covered with silica layer. Right after that, the top and bottom of silica were removed through vertical etching by inductively coupled plasma machine. The silica on the side wall of structure was retained to protect the side wall and raise aspect ratio. Eventually, the silicon was etched by the same way of inductively coupled plasma machine that it was researched on the difference in etching gas. And there was a comparison between chlorine and fluorine gases. After optimizing parameters, the nano-structure was made under 100nm.
目次 Table of Contents
目錄
誌謝 I
目錄 II
表目錄 V
圖目錄 VII
中文摘要 XII
英文摘要 XIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 12
第二章 實驗原理及儀器介紹 14
2-1 多靶磁控濺鍍系統 14
2-1.1 機台架構、功能與特性 14
2-1.2 工作原理 17
2-1.3 工作機制 18
2-1.4 參數意義 19
2-2 聚焦離子束技術 20
2-2.1 機台架構、功能與特性 20
2-2.2 工作原理 24
2-2.3 工作機制 25
2-2.4 參數意義 26
2-3 感應耦合式電漿蝕刻系統 28
2-3.1 機台架構、功能與特性 28
2-3.2 工作原理 29
2-3.3 工作機制 29
2-3.4 參數意義 30
第三章 實驗設計 34
3-1 實驗簡介 34
3-2 實驗流程 35
3-3 實驗說明 36
第四章 實驗結果與討論 38
4-1 濺鍍製程參數的影響 38
4-2 二次沉積對結構深寬比及垂直度之影響 40
4-3 蝕刻氣體:氟基與氯基的比較 40
4-4 參數最佳化 41
第五章 結論與未來展望 75
參考文獻 76
參考文獻 References
[1] D. Mailly, “Nanofabrication techniques”, The European Physics Journal, Vol.172, pp.333-342, 2009.
[2] R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics”, Proceedings of the IEEE, Vol. 96(2), pp. 248-270, February, 2008.
[3] J. Warlaumont, “X-ray lithography-On the path to manufacturing”, Journal of Vacuum Science & Technology B, Vol. 7(6), pp.1634-1641, November, 1989.
[4] J. P. H. Benschop, A. J. J. van Dijsseldonk, W. M. Kaiser, and D. C. Ockwell, “EUCLIDES: European EUVL Program”, Journal of Vacuum Science and Technology B, Vol. 17(6), pp.2978-2981, November, 1999.
[5] 蕭宏, 半導體製程技術導論, 台灣培生教育, ISBN:9789572054840, 2007.
[6] Zhaoning Yu, Wei wu, Lei Chen and Stephen Y. Chou, “Fabrication of large area 100 nm pitch grating by spatial frequency doubling and nanoimprint lithography for subwavelength optical applications”, Journal Vacuum Science Technology B, Vol.19(6), pp.1071-1023, 2001.
[7] 田民波著, 顏怡文校訂, 薄膜技術與薄膜材料, 五南圖書出版公司, ISBN 978-957-11-4801-4, 2007.
[8] S. M. Rossnagel, “Directional and preferential sputtering-based physical vapor deposition”, The Solid Films, Vol. 263, pp.1-12, 1995.
[9] 羅吉宗, 薄膜科技與應用, 全華圖書股份有限公司, ISBN 978-957-21-7071-7, 2009.
[10] J. L. Vossen, “A sputtering technique for coating the inside walls of through-holes in substrates”, Journal Vacuum Science Technology, Vol. 11, No. 5, 1974.
[11] 楊舜傑, 國立中山大學機械與機電工程學系碩士論文, 民(97).
[12] A. A. Tseng, “Recent developments in micro-milling using focused ion beam technology”, Journal of Micromechanics and Micro-engineering, Vol.14(4), R15-R34, April, 2004.
[13] K.Sarvesh, Tripathi, N. Vishwas Kulkarni, “Evolution of surface morphology of nano and micro structures during focused ion beam induced growth”, Nuclear Instruments and Methods in Physics Research, Vol.267 , pp.1381–1385, 2009.
[14] M. J. Vasile, J. S. Xie, and R. Nassar, “Depth control of focused ion-beam milling from a numerical model of the sputter process”, Journal of Vacuum Science and Technology B, Vol.17(6), pp.3085-3090, November, 1999.
[15] J. E. Murguia, C. R. Musil, M. I. Shepard, H. Lezec, D. A. Antoniadis, and J. Melngailis, “Merging focused ion beam patterning and optical lithography in device and circuit fabrication”, Journal of Vacuum Science and Technology B, Vol.8(6), pp.1374-1379, November, 1990.
[16] J. H. Daniel, D. F. Moore, and J. F. Walker, “Focused ion beams for microfabrication”, Engineering Science and Education Journal, Vol.7(2), pp.53-56, 1998.
[17] M. Villarroya, N. Barniol, and C. Martin, F. Perez-Murano, J. Esteve, L. Bruchhaus, R. Jede, E. Bourhis, J. Gierak, “Fabrication of nanogaps for MEMS prototyping using focused ion beam as a lithographic tool and reactive ion etching pattern transfer” , Journal of Microelectronic Engineering, Vol.84(5), pp.1215-1218, May, 2007.
[18] J. Melngailis, C. R. Musil, E. H. Stevens, M. Utlaut, E. M. Kellogg, R. T. Post, M. W. Geis, and R. W. Mountain, “The focused ion beam as an integrated circuit restructuring tool”, Journal of Vacuum Science and Technology B, Vol.4(1), pp.176-180, January, 1986.
[19] Jin Han, Hiwon Lee, Byung-Kwon Min, Sang Jo Lee, “Prediction of nanopattern topography using two-dimension focused ion beam milling with beam irradiation intervals”, Microelectronic Engineering, Vol.87, pp.1-9, 2010.
[20] S. J. Pearton, and D. R. Norton, “Dry etching of electronic oxides, polymers, and semiconductors”, Plasma Processes and Polymers, Vol.2(1), pp.16-37. January, 2005.
[21] 國科會精密儀器發展中心, 真空技術與應用, 全華科技, ISBN 9570286768, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.119.199
論文開放下載的時間是 校外不公開

Your IP address is 3.145.119.199
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code