Responsive image
博碩士論文 etd-0831111-071502 詳細資訊
Title page for etd-0831111-071502
論文名稱
Title
無基板內嵌氣泡式背光模組設計與製造
Design and fabrication of embedded air void backlight module without substrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-21
繳交日期
Date of Submission
2011-08-31
關鍵字
Keywords
無基板、內嵌氣泡、複合光學膜片、分段式微電鑄、自製灰階光罩、多重深寬比、可變尺寸微透鏡陣列
multi-step electroforming, without substrate, embedded micro-voids, variable size microlens array, homemade gray scale mask, compound optical film
統計
Statistics
本論文已被瀏覽 5690 次,被下載 1100
The thesis/dissertation has been browsed 5690 times, has been downloaded 1100 times.
中文摘要
輕薄型的攜帶式面板蓬勃發展,要能做到又輕又薄是目前市場的趨勢。本論文將提出薄型化軟性面板之光學複合膜研究,將以其中的背光模組為主軸,設計一新型LED (Light emitting diode;發光二極體) 側光式背光模組,將點光源由複合膜結構轉換為面光源出光,進而提升光取出效率。研究步驟以商業光學模擬軟體FRED對複合膜之微結構設計之光學效應進行探討,再以類LIGA (Lithographie galvanoformung abformung) 技術以THB-126N負光阻與AZ-4620正光阻製作不同深寬比及填充率之微透鏡結構模具。其中將提出多項創新製程進行研究,自製灰階光罩搭配微透鏡陣列以單一製程達到多重深寬比之微透鏡陣列結構。另以分段式微電鑄法改變微透鏡陣列尺寸及填充率呈現可變尺寸之微透鏡陣列結構。以此二方法製作第一模具,再翻製二次模具。以此兩種二次模具於翻製PDMS (Polydimethylsiloxane;聚二甲基矽氧烷) 光學複合膜同時,以微氣管加壓通入定量氣體,可使PDMS內含可控大小及選擇性分佈之微氣泡,有導光及擴散之功能。此創新製程不需基板即可快速一體成型,可得到無基板式內嵌氣泡擴散導光層與多重深寬比及可變尺寸微透鏡陣列複合光學膜片。最後以BM-7A彩色輝度計進行光學量測分析,此創新製程可改善輝度 (Luminance) 與發光面之均勻度 (Uniformity),以減少LED顆數提供更高的發光效率,對薄型化面板產業有顯著的發展。
Abstract
The development and application of portable LCD (Liquid crystal display) technology is the main trend on the market. The goal of this study is to fabricate a compound optical film, and we focus on the design and fabrication of a new type backlight module for side-LED (Light emitting diode) display. The optical efficiency can be improved via the compound optical film. The profile of optical film was determined using commercial optical software, FRED. The mold with multi aspect ratio and multi fill-factor microlens array by LIGA-like process (Lithographie galvanoformung abformung) was produced using THB-126N negative photoresist and AZ-4620 positive photoresist. The study presents many innovative processes, such as the homemade gray scale mask, and multi-step electroforming method, which both produces the microlens array with variable size and aspect ratio. In addition, the embedded micro-void caused light guide and diffusion under the quantitative control during the PDMS (Polydimethylsiloxane) optical film fabrication. The compound optical film with embedded micro-voids, multi aspect ratio and variable size microlens array can be fabricated quickly without substrate. Then the optical properties were analyzed by BM-7A to characterize the luminance, uniformity and optical efficiency.
目次 Table of Contents
論文審訂書........................................................i
誌謝...................................................................ii
摘要..................................................................iii
Abstract............................................................iv
目錄...................................................................v
圖次................................................................viii
表次.................................................................xii
第一章 緒論.....................................................1
1-1 研究背景與目的.......................................1
1-2 文獻回顧...................................................1
1-3 研究動機與目的.......................................4
1-4 論文架構...................................................4
第二章 製作原理.............................................6
2-1 背光模組基本架構...................................6
2-2 基本光學原理...........................................7
2-2-1 反射與折射...........................................7
2-2-2 光的穿透...............................................9
2-2-3 光度學.................................................10
2-3 光學量測.................................................10
2-3-1 九點量測.............................................10
2-3-2 均勻度計算.........................................11
2-4 球面微透鏡陣列設計理論.....................11
2-5 實驗製程理論.........................................12
2-5-1 LIGA製程.............................................12
2-5-2 軟微影..................................................13
2-5-3 灰階光罩..............................................14
2-5-4 電鑄技術..............................................15
2-6 兩種新型LIGA-like技術.........................16
2-6-1 灰階微透鏡陣列..................................16
2-6-2 分段式電鑄..........................................17
第三章 結構設計與分析................................18
3-1 設計複合式光學膜片..............................18
3-2 各元件結構..............................................19
3-3 參數配置..................................................20
3-3-1 光學模擬軟體簡介..............................20
3-3-2 FRED模擬軟體...................................20
3-3-3 模型建立..............................................21
3-3-4 模擬結果..............................................25
3-4 決定參數..................................................32
第四章 實驗方法與步驟................................33
4-1 灰階微透鏡陣列模具製作......................34
4-1-1 自製底片灰階光罩..............................34
4-1-2光學穿透率與表面輪廓量測...............35
4-1-3 灰階微透鏡陣列模具製程..................38
4-2 分段式填充微透鏡陣列模具製作..........41
4-2-1 黃光微影製程......................................41
4-2-2 分段式電鑄..........................................43
4-3 軟微影製程..............................................46
4-4 光學量測設置..........................................48
第五章 結果與討論........................................50
5-1 實驗結果..................................................50
5-1-1 灰階微透鏡陣列模具結果..................50
5-1-2 分段式填充微透鏡陣列模具結果......53
5-1-3 軟微影結果..........................................55
5-1-4 內嵌氣泡光學膜片結果......................59
5-2 光學量測結果..........................................60
5-3 量測結果與模擬值比較..........................63
第六章 結論與未來展望................................65
6-1 結論..........................................................65
6-2 未來展望..................................................65
參考文獻.........................................................66
參考文獻 References
[1] M. P. Bigwood, “Patent trend analysis: incorporate current year data”, World patent information Vol. 19, pp. 243-249, 1997.
[2] 韓斌,”高性能LED背光模組與照明應用之光學設計”,導光擴散光學材料發展與多功能延伸應用研討會,國立中興大學,2010。
[3] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes”, Applied physics letters., Vol. 63, pp. 2174-2176, 1993.
[4] J. Gruner, R. Cacialli, R. H. Friend, “Emission enhancement in single-layer conjugated polymer microcavities”, Journal of applied physics., Vol. 80, pp. 207-215, 1996.
[5] S. C. Tang, “Brightness enhancement film”, US patent, No 6277471, 2001.
[6] S. C. Tang, “Uniform curved surface structure of a brightness unit for a brightness enhancement film”, US patent, No 6759113, 2001.
[7] R. Winston, B. A. Jacobson, R. L. Holman, N. A. Gitkind, “Tapered multilayer luminaire devices”, US patent, No 5303322, 1994.
[8] H. Kim, J. J. Kim, B. K. Lee, D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system”, Optics letters, Vol. 31, pp. 3016-3018, 2006.
[9] S. Cobb, Jr. M. E. Gardiner, K. M. Kotchick, K. Toyooka, W. A. Hibbard, “Variable pitch structured optical film”, US patent, No 5919551, 1999.
[10] M. K. Wei, J. H. Lee, H. Y. Lin, Y. H. Ho, K. Y. Chen, C. C. Lin, C. F. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array”, Journal of optics a: pure and applied optics, Vol. 10, pp. 1-9, 2008.
[11] 林盈妃,“非對稱微透鏡陣列設計製作研究”,碩士論文,國立中興大學,2010。
[12] N. J. Shirtcliffe, S. Aqil, C. Evans, G. McHale, M. I. Newton, C. C. Perry, P. Roach, “The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping”, Institute of physics publishing, Vol. 14, pp. 1384-1389, 2004.
[13] C. Tsou, C. Lin, “An improved process for fabricating microlens array with high fill factor and controllable configuration”, Journal of microelectromechanical systems, Vol. 17, pp. 1047-1057, 2008.
[14] S. M. Kuo, C. H. Lin. “Non-spherical su-8 microlens array fabricated utilizing a novel stamping process and an electro-static pulling method”, Micro electro mechanical systems, Vol. 18, pp. 987-990, 2009.
[15] H. Yabu, M. Shimomura, “Simple fabrication of micro lens arrays”, Langmuir, Vol. 21, pp. 1709-1711, 2005.
[16] D. Purcell, A. Suratkar, A. Davies, F. Farahi, H. Ottevaere, H. Thienpont, “Interferometric technique for faceted microstructure metrology using an index matching liquid”, Applied optics, Vol. 49, pp. 732-738, 2009.
[17] 吳育治,“內嵌UV 雷射點於玻璃導光增亮技術開發”,碩士論文,國立中山大學,2010。
[18] 姜成果、田貴才、張裕仕、韋德泉,“水中微氣泡激光散射場的的特性”,吉林大學學報,第46期,pp. 314-316,2008。
[19] Z. Coleman, T. Kelly, M. Chu, “Illumination device incorporating a high clarity scattering layer”, US patent, No 7722224, 2010.
[20] 廖翔霖,“新型導光擴散元件出光面輝度與均勻性之模擬研究”,碩士論文,國立中央大學,2008。
[21] J. M. Hong, F. M. Ozkeskin, J. Zou, “ A micromachined elastomeric tip array for contact printing with variable dot size and density ”, Journal of micromechanics and microengineering, Vol. 18, pp. 1-6, 2008.
[22] S. M. Kuo, C. H. Lin, “Non-spherical su-8 microlens array fabricated utilizing a novel stamping process and an electro-static pulling method”, Micro electro mechanical systems, Vol. 22, pp. 987-990, 2009.
[23] T. K. Shih, C. F. Chen, J. R. Ho, F. T. Chuang, “Fabrication of pdms microlens and diffuser using replica molding”, Microelectronic engineering, Vol. 83, pp. 2499-2503, 2006.
[24] K. Bao, B. Zhang, X. N. Kang, T. Dai, C. Xiong, G. Y. Zhang, Y. Chen, “Improvement of light extraction from micro-pattern encapsulated gan-based led by imprinting”, Proceedings of the SPIE, Vol. 6910, pp. 69100N-69100N-8, 2008.
[25] 趙崇禮、馬廣仁、林宏彝,“微模具製程發展現況”,機械工業雜誌,第279期,工業技術研究院,pp. 43-52,2006。
[26] N. Ridge, "HEBS-glass photomask blanks", User's manual(Canton materials inc.) CMI product information, No. 96-01, pp. 1-15, 1996.
[27] C. M. Waits, B. Morgan, M. Kastantin, R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scalelithography and deep reactive ion etching”, Sensors and actuators, Vol. 119, pp. 245-253, 2005.
[28] L. Mosher, C. M. Waits, B. Morgan, R. Ghodssi, “Double-exposure grayscale photolithography”, Journal of microelectromechanical systems, Vol. 18, pp. 308-315, 2009.
[29] M. R. Wang, H. Su, ”Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication”, Appl. Opt. , Vol.37, pp. 7568-7576, 1998.
[30] 吳憲明,“精密儀器電鑄技術市場應用”,雷射加工暨精密電鑄技術研討會,台大慶齡工業研究中心,p. 52,1997。
[31] Y. Sakurai, S. Okuda, H. Nishiguchi, N. Nagayama, M. Yokoyama, “Microlens array fabrication based on polymer electrodeposition”, Journal of materials chemistry, Vol. 13, pp. 1862-1864, 2003.
[32] 韋乾佑,“以微電鑄法製造高填充率之微透鏡陣列模仁研究”,碩士論文,國立台灣科技大學,2005。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code