Responsive image
博碩士論文 etd-0831111-160013 詳細資訊
Title page for etd-0831111-160013
論文名稱
Title
近場靜電製作PVDF奈米纖維壓電性能研究與分析
Research and Analysis on Piezoelectric Properties of Near-field Electrospinning PVDF Nanofiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-29
繳交日期
Date of Submission
2011-08-31
關鍵字
Keywords
近場靜電、多壁奈米碳管、壓電纖維、能量擷取、壓電傳感器、PVDF
Near-field electrospinning, PVDF, Micro-transducer, Energy Harvest, MWCNT, Piezoelectric fiber
統計
Statistics
本論文已被瀏覽 5672 次,被下載 1062
The thesis/dissertation has been browsed 5672 times, has been downloaded 1062 times.
中文摘要
本研究計畫利用近場靜電技術(Near-field Electrospinning)製作聚偏氟乙烯(Polyvinylidene fluoride, PVDF)壓電奈米纖維,並添加奈米碳管觀察其纖維外觀與壓電特性,並利用壓電材料之逆壓電效應,觀察PVDF纖維之致動性。近場靜電技術可用來製作具良好壓電性質的PVDF壓電纖維,相較於PVDF壓電薄膜,電紡纖維具有更高的壓電係數與機-電能轉換效率,更適合用來製作微型感測器。首先,在電紡PVDF纖維製程中,以不同重量百分之PVDF粉末、DMSO(Dimethyl Sulfoxide)、丙酮(Acetone)溶劑及表面活性劑(Fluorosufactant,ZONYL® UR)混合調製之溶液並添加多壁奈米碳管(Multi wall carbon nanotube)於PVDF溶液而成的溶液,將調製後的溶液填充於注射器當中,利用內徑300μm至150μm針頭上通以直流電壓,將針頭置於接地之矽晶圓收集板上端之一小間距而形成高壓靜電場,使針頭頂端之溶液因電場與表面張力形成泰勒錐(Taylor cone)的尖端噴射出絲狀結構,並透過X-Y軸作動平台移動收集板來進行電紡纖維的收集,可製作出線徑為微奈米等級之纖維,並藉由平台移動速度、針頭電壓來控制拉扯纖維與極化的強度。本研究使用不同之電紡製成參數瞭解製程參數對於纖維之影響,並使用X光繞射分析儀(X-ray diffraction,XRD)測得β相之壓電結晶結構強度(2θ=20.8度),探討以上參數對於PVDF纖維壓電特性之影響,以進行製程參數的最佳化。透過PI膠帶將纖維兩端固定於銅電極上形成一結構,而後輸入一電壓訊號於電極,使纖維產生大的撓曲變形,並以光學顯微鏡測量纖維之變形量,推導出纖維直徑、施加電場與變形量之數學關係式,並透過實際實驗觀測施加電壓所造成PVDF纖維之變形。最後為在正壓電效應探討,藉由將 PVDF壓電纖維陣列與電極結構進行封裝,以提升壓電纖維於d33模式的轉換效率,並以低頻率10Hz內的振動激勵下來產生15mVp-p的發電量。
Abstract
In this study, with near-field electrospinning technique of PVDF (Polyvinylidene fluoride) piezoelectric nano-fibers and the additional multiwalled-carbon nanotubes(MWCNT), both mechanical strength and piezoelectric characteristics of a single nano-fiber were discussed. Then the behavior of piezoelectric fiber actuators was realized using inverse piezoelectric effect. Near-field electrostatic technology can be used to fabricate PVDF piezoelectric fibers with an excellent piezoelectric property compared with film structures due to a higher piezoelectric coefficient and energy conversion efficiency. It is more suitable to produce micro transducers. By adjusting velocity of a fully parametric x-y stage, DC voltage, and the distance between the needle and collection plate, the morphology and polarization intensity of piezoelectric fiber can fully be controlled. In addition, the optimal parameters of PVDF solution such as PVDF powder weight percentage and MWCNT were also discussed. From the observation of XRD (X-ray diffraction), it reveals a high diffraction peak at 2θ=20.8° of piezoelectric crystal β-phase structure. Finally, the actuation property was tested using DC voltage supply, and fiber has significant deflection in the experiment. The vertical deflection can be observed and compared with model solution of piezoelectric cantilever structure. In the fiber’s direct piezoelectric effect, the result shows that fiber can produce an open circuit voltage of 15mV under a low frequency vibration of 7Hz.
目次 Table of Contents
第一章緒論 1
1-1研究背景與動機 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1壓電材料相關研究探討 4
2-2 PVDF奈米纖維 5
2-3 近場靜電紡絲纖維之製作 7
第三章 研究方法 9
3-1壓電原理 9
3-2 PVDF壓電纖維製作原理與流程 11
3-3 PVDF先驅溶液的製作流程 12
3-4 近場靜電紡絲製作PVDF壓電纖維原理 15
3-5 近場靜電紡絲製作PVDF壓電纖維 18
3-6 掃描式電子顯微鏡(SEM) 20
3-7 X光射線繞射儀(XRD) 21
3-8 建立PVDF纖維致動性之解析解 23
3-9 設計致動元件 33
3-10 PVDF纖維能量擷取裝置發電性設計 35
第四章實驗結果與討論 36
4-1 PVDF近場靜電紡絲 36
4-2 使用X-Y軸作動平台收集 37
4-3針頭尺寸 39
4-4 X-Y軸作動平台移動速度 41
4-5 電場大小 43
4-6 溶液濃度與添加奈米碳管 44
4-7 SEM觀察與分析 46
4-8 XRD觀察與分析 52
4-9 PVDF致動性觀察 55
4-10 PVD能量擷取裝置發電性量測 64
第五章 結論及未來展望 67
5-1 結論 67
5-2 未來展望 68
參考文獻 70

參考文獻 References
1. J. F. Nye, “Physical Properties of Crystals,” Oxford, Clarend on Press, 1964.
2. S. E. Burke, J. E. Hubbard Jr, “Distributed Transducers for Structural Measurement and Control,” Control and Dynamic Systems 36,223-273, 1990.
3. E. F. Crawley, J.De Luis, “Use of Piezoelectric Actuators as Elements of Intelligent Structures,” American Institute of Aeronautics and Astronautics Journal 25. 1373_1385, 1987.
4. J. E. Hubbard Jr., T. Bailey, “Distributed Piezoelectric Polymer Active Vibration Control of a Cantilever Beam,” Journal of Guidance Control and Dynamics 8, 605-611, 1985.
5. C.K. Lee, Chiang W and O’Sullivan T C, “Piezoelectricmodal Sensor/Actuator Pairs for Critical Active Damping Vibration Control, “ J. Acoust. Soc. Am. 90 374–84,1991.
6. S.E. Burke, JE Hubbard Jr. and JE Meyer, “Distributed Transducers and Collocation Mech,” Syst. Signal Process. 7349–61, 1993.
7. J.S. Vipperman, R.L. Clark, “Implications of Using Collocated Strain-based Transducers for Output Active Structural Acoustic Control,” J. Acoust. Soc. Am. 106 1392–9, 1999.
8. P. Gardonio, Y.S. Lee, S.J. Elliott and S. Debost, “Analysis and Measurement of a Matched Volume Velocity Sensor and Uniform Force Actuator for Active Structural Acoustic Control,” J. Acoust. Soc. Am. 110 3025–31, 2001.
9. Y.S. Lee, P. Gardonio and S.J. Elliott, “Coupling Analysis of a Matched Piezoelectric Fluoride Sensor and Actuator Pair for vibration Control of a Smart Beam,” J. Acoust. Soc. Am. 1112715–26, 2002.
10. H.S. Tzou, C.I. Tseng, “Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement Control of Distributed Parameter System: A Piezoelectric Finite Element Approach,” J Sound and Vibration;138:17–34, 1990.
11. M.J. Tseng, W.Z. Wu, “Analytical and Experimental Investigation on Vibration Control of Piezoelectric Structures,” Structural Vibration and Acoustics;34:33–42, 1991.
12. Z. Li, P.M. Bainum, “Vibration Control of Flexible Spacecraft Integrating a Momentum Exchange Controller and a Distributed Piezoelectric Actuator,” J. Sound and Vibration;177(4):539–53,1994.
13. S.F. Asokanthan, M. Gu, “Distributed Control of Flexible Structure: Theory and Experiment,” Proc Asia-Pacific Control Conf:539–53, 1995.
14. D.J Spearritt, S.F. Asokanthan. “Development of a Spatially Distributed Torsional Vibration Actuator,” J Sound and Vibration;193(5):941–56,1996.
15. S Dong, M James K., “Control of a Rotating Cantilever Beam Using a Torque Actuator and a Distributed Piezoelectric Polymer Actuator,” Applied Acoustics 63 885–899,2001.
16. X. Chen, S.Y. Xu, N. Yao , “1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers,” Nano Lett., Vol. 10, No. 6, pp. 2133-2137, 2010.
17. F. Li, W.T. Liu, “A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System,” ISSN 1424-8220. 2010.
18. J.M. Haa, H.O. Limb and N.J. Jo, “Actuation Behaviorof CP Actuator Based on Polypyrrole and PVDF,” Advanced Materials Research vol. 29, pp. 363-366, 2007.
19. C. Chang, Y.K. Fuh, and L. Lin, “A Direct-Write Piezoelectric PVDF Nanogenerator,” 15th International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, pp. 1485-1488. 2009.
20. W.A. Yee, M. Kotaki, Y. Liu, X. Lu, “Morphology, Polymorphism Behavior and Molecular Orientation of Electrospun Poly(vinylidene fluoride) Fibers,” Polymer, 48 512–521. 2007.
21. Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang, and J. Sheng, “Preparation and Properties of Electrospun Poly(vinylidene flouride) Membranes,” J. Appl. Polymer, Sci. 97466–474. 2005.
22. X. Ren, Y. Dzenis, “Novel Continuous Poly(vinylidene fluoride) Nanofibers,” Mater. Res. Soc. Symp. Proc. 920 55–61. 2006.
23. D. Sun, C. Chang, S. Li, L. Lin, “Near-field Electrospinning,” Nanoletters, 6 839–842. 2006.
24. C. Chang, K. Limkrailassiri, L. Lin, “Continuous Near-field Electrospinning for Large Area Deposition of Orderly Nanofiber Patterns,” Appl. Phys, Lett 93 123111, 2008.
25. C. Chang, V.H. Tran, J. Wang, Y. Fuh, L. Lin, “Direct-write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nanoletters 10 726–731. 2010.
26. J. Pu, X.J. Yan, Y.D. Jiang, C. Chang, Liwei Lin1, “Piezoelectric Actuation of a Direct Write Electrospun PVDF Fiber,” Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on , 2010.
27. J. Pua, X.J. Yan, Y.D. Jiang, ChiehChang, LiweiLin, “Piezoelectric Actuation of Direct-write Electrospun Fibers,” Sensors and Actuators A: Physical, 2010.
28. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G.L. Yang, C. Li, and P. Willis, “Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns,” Advanced Materials, vol. 15, no. 14, pp. 1161-1165, 2003.
29. Y. Dzenis, and Y. Wen, “Continuous Carbon Nanofibers For Nanofiber Composites,” Materials Research Society Symposia Proceedings, vol. 702, pp. 173-178, 2002.
30. H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, and F. Ko, “Reinforcement and Rupture Behavior of carbon Nanotubes–polymer Nanofibers,” Applied Physics Letters, vol. 85, no. 10, pp. 1775-1777, 2004.
31. S. Vidhate, A. Shaito, J. Chung, and N. A. D’Souza, “Crystallization, Mechanical, and Rheological Behavior of Polyvinylidene Fluoride-carbon Nanofiber Composites,” Journal of Applied Polymer Science, vol. 112, no. 1, pp. 254-260, 2009.
32. Z.Y. Jie, Z.Z. Di, Y.W. Xue, “Preparation and Characterizations of PVDF/MWCNT Nanocomposites,” Polymer Materials Science and Engineering, Vol. 26, No. 6 pp140, Jun. 2010.
33. W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, “Morphology, Polymorphism Behavior and Molecular Orientation of Electrospun Poly (vinylidene fluoride) Fibers,” Polymer, vol. 48, no. 2, pp. 512-521, 2006.
34. Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang, and J. Sheng, “Preparation and Properties of Electrospun Poly(vinylidene fluoride) Membranes,” Journal of Applied Polymer Science, vol. 97, no. 2, pp. 466-474, 2004.
35. 周卓明, “壓電力學,” 全華科技圖書股份有限公司,第一版,台灣,pp.43-47, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code