Responsive image
博碩士論文 etd-0831111-171151 詳細資訊
Title page for etd-0831111-171151
論文名稱
Title
廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討
Diurnal Variation of Atmospheric Particles and their Source Fingerprint at Xiamen Bay
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
194
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-09
繳交日期
Date of Submission
2011-08-31
關鍵字
Keywords
大氣懸浮微粒、化學質量平衡受體模式、主成份分析、逆軌跡、日夜變化、物化指紋特徵、污染源解析、富集因子
atmospheric particulates, diurnal variation, physicochemical characteristics, CMB receptor model, enrichment factor (EF), principal component analysis (PCA), backward trajectory
統計
Statistics
本論文已被瀏覽 5637 次,被下載 420
The thesis/dissertation has been browsed 5637 times, has been downloaded 420 times.
中文摘要
近年來,隨著廈門灣經濟快速發展,周邊工業也隨之興盛,不但導致能源的大量消耗及污染物的大量排放,緊接而來的環境污染問題也變得十分棘手,其中尤以空氣污染最為明顯。而金門地區亦遭受池魚之殃,雖然當地幾乎無大型工業活動,但其空氣品質卻是全台灣地區空氣品質最惡劣的區域,且由金門監測站發現懸浮微粒濃度日間及夜間變化趨勢有所差異,期望藉由本研究釐清其可能原因。
本研究於2010年4月~2011年4月在廈門灣選定10個採樣點,進行日間(8:00~17:00)與夜間(17:00~翌日8:00)大氣懸浮微粒採樣。另在PM10濃度偏高期間,進行連續5日大氣懸浮微粒採樣,並增加雙粒徑分道採樣器(PM2.5及PM2.5-10)及微孔均勻沈降衝擊器(0.056 μm≦dp≦18 μm)之採樣。此外,本研究亦採集廈門灣主要污染源之粉塵樣本,以自行設計之再懸浮室將其重新懸浮於空氣中予以採集。懸浮微粒物化分析項目包括質量濃度、粒徑分佈、水溶性離子成份、金屬元素成份及碳成份。
研究結果發現例行性採樣期間秋、冬兩季PM10平均濃度明顯高於春、夏兩季,主要受到大陸冷高壓南下將北方空氣污染物吹送至廈門灣及擴散不利之氣象因子所影響,逆軌跡分析結果亦指出來自北方的懸浮微粒濃度確實較來自南方的高。進一步利用t檢定分析廈門灣各測站不同季節之日間及夜間PM10濃度差異性,發現金沙國小之日夜濃度差異已達顯著水準(p-value<0.05),顯示此採樣站日間及夜間之懸浮微粒污染來源應有所差異。密集採樣期間,亦可能受到粗微粒(如:沙塵暴)之影響,其粒徑分佈呈現雙峰型態,且粗粒峰略高於細粒峰,其最大粒徑分別位於3.2~5.6 μm及0.32~0.56 μm。
水溶性離子成份中以二次無機性氣膠(SO42-、NO3-、NH4+)為主,約佔85%。Mg、K、Ca、Cr、Mn、Fe、Zn、Al、Cu、As等金屬元素成份之日夜濃度比值(D/N)變化範圍均在一個數量級內,而Cd、Pb、Ni、Ti之D/N比值平均值在春季及夏季變化範圍則大於一個數量級,顯示懸浮微粒濃度之日夜差異及季節變化係導致於污染來源之不同。OC與EC濃度藉由相關性係分析發現,夏季期間夜間OC與EC之相關性有大於日間之趨勢;而冬季期間則呈現金門地區相關性大於廈門地區之情形。
由富集因子分析結果顯示,陶瓷業、石材加工業及水泥業之相關性較電力業高,而地殼揚塵依序為街道揚塵、旱田揚塵、建築工地,另生質燃燒亦是不可以忽視之污染源。主成分分析法及受體模式結果顯示,廈門灣之日間及夜間懸浮微粒均以衍生性污染物、燃料及生質燃燒、海水飛沫、交通污染及土壤揚塵為主要污染來源,而石材加工業、水泥業、陶瓷業、電力業貢獻率以冬季最為顯著,日間約佔38%,而夜間約佔45%。
Abstract
In recent years, the rapid development of economy and industry in Xiamen Bay causes serious environmental problems, particularly poor air quality and visibility impairment. There are no large-scale industrial emission sources in Kinmen Island, however, its ambient air quality is always the poorest in Taiwan. Moreover, ambient air quality monitoring data showed that PM10 concentrations varied in daytime and at nighttime. Consequently, this study tired to ascertain the potential causes for this phenomenon.
This study selected ten particulate matter (PM) sampling sites at Xiamen Bay, including five sites at Kinmen Island and five sites at metro Xiamen. Particulate matter sampling was conducted in daytime (8:00-17:00) and at nighttime (17:00-8:00), which included regular and intensive sampling. Regular sampling was conducted to collect PM10 with high-volume samplers three times a month from April 2009 to April 2010, while intensive sampling was conducted to collect fine (PM2.5) and coarse (PM2.5-10) particles with dichotomous samplers and particle size distribution with a MOUDI at site B2 for consecutive 5 days in the spring and winter of 2009~2010. After sampling, the physicochemical properties of PM, including mass concentrations, particle size distribution, water- soluble ionic species, metallic elements, and carbonaceous contents were further analyzed.
The level of atmospheric PM is affected by meteorological condition, thus PM10 concentrations in winter and fall was much higher than those in spring and summer. Results from backward trajectories showed that the concentrations of PM10 blown from the north were generally higher than those from the south. Furthermore, t-test analysis indicated that PM10 concentrations in daytime and at nighttime at site B3 were significantly different (p-value<0.05). During the intensive sampling periods, PM10 concentrations were mainly affected by coarse particles compared to fine particles. The highest concentration for fine and coarse particle modes occurred at the size ranges of 0.32~0.56 μm and 3.2~5.6 μm, respectively.
The most abundant water-soluble ionic species of PM10 were secondary inorganic aerosols (SO42-, NO3-, and NH4+) which accounted for 85% of total ions. The daytime and nighttime PM10 concentration ratios (D/N) for Mg, K, Ca, Cr, Mn, Fe, Zn, Al, Cu, As, and V were in the same order of magnitude, however, the D/N ratios of Cd, Pb, Ni, and Ti in spring and summer varied higher than an order of magnitude, indicating that the emission sources of PM were different in daytime and at nighttime. Correlation analysis of OC and EC showed that OC and EC at nighttime had a higher correlation than those in daytime, while OC and EC had a higher correlation in Kinmen Island than those in metro Xiamen, indicating carbonaceous sources must be different in summer and winter at Xiamen Bay.
Enrichment factor analysis revealed that ceramic industry, stone processing, and cement industry had higher correlation with PM10 concentration than utility power plants. Crustal dusts consisted of road dusts, farmland dusts, and constructive dusts, while biomass burning was not a negligible sources. Results obtained from PCA and CMB receptor modeling showed that major sources of PM in Xiamen Bay were secondary inorganic aerosols, fuel and biomass burning, marine aerosols, vehicular exhansts, and soil dusts. Besides, stone processing, cement industry, ceramic industry, and utility power plants had the highest contribution in winter. Their contributions in daytime and at nighttime were 38% and 45%, respectively.
目次 Table of Contents
目 錄
頁次
謝誌………………………………………………………………….. I
中文摘要…………………………………………………………….. III
英文摘要…………………………………………………………….. V
目錄………………………………………………………………….. VI
表目錄……………………………………………………………….. IX
圖目錄……………………………………………………………….. XI
第一章 前言……………………………………………………….. 1-1
1-1 研究緣起…………………………………………………… 1-1
1-2 研究目的…………………………………………………… 1-2
1-3 研究範圍與架構…………………………………………… 1-2
第二章 文獻回顧………………………………………………….. 2-1
2-1懸浮微粒生成機制及物化特性……………………………. 2-1
2-1-1 懸浮微粒污染來源及生成機制………………………. 2-1
2-1-2 水溶性離子成份特性…………………………………. 2-2
2-1-3 金屬元素成份特性……………………………………. 2-5
2-1-4 碳成份特性……………………………………………. 2-7
2-2 懸浮微粒與氣象因子之相關性…………………………… 2-9
2-2-1 懸浮微粒濃度之日夜變化…………………………… 2-9
2-2-2 溫度與相對濕度………………………………………. 2-11
2-2-3 風速與風向……………………………………………. 2-13
2-3 廈門灣懸浮微粒濃度變化趨勢………………………….. 2-14
2-3-1 廈門灣地理環境及氣候特徵…………………………. 2-14
2-3-2 廈門灣懸浮微監測現況………………………………. 2-15
2-4 廈門灣環境負荷特性……………………………………… 2-18
2-4-1金門地區環境負荷特性………………………………. 2-18
2-4-2廈門地區環境負荷特性………………………………. 2-19
2-5 國內外海灣懸浮微粒相關研究回顧……………………… 2-20
2-6 污染源解析模式之應用…………………………………… 2-25
2-6-1 富集因子分析法(Enrichment Factor)..………..……… 2-25
2-6-2 主成份分析法(Principal Component Analysis)………. 2-29
2-6-3 化學質量平衡受體模式(CMB Receptor Model)……... 2-30
2-6-4 逆軌跡模式(Backward Trajectory) …………………... 2-32
第三章 研究方法…………………………………………………. 3-1
3-1 採樣規劃…………………………………………………… 3-1
3-1-1 採樣地點規劃…………………………………………. 3-1
3-1-2 採樣時間規劃…………………………………………. 3-3
3-1-3 懸浮微粒指紋特徵分析………………………………. 3-4
3-2 採樣方法與原理…………………………………………… 3-5
3-2-1懸浮微粒採樣方法及原理…………………………….. 3-5
3-2-2 微孔均勻沈降衝擊器…………………………………. 3-6
3-3 質量濃度量測及化學成份分析方法……………………… 3-9
3-3-1 質量濃度量測方法…………………………………… 3-9
3-3-2 水溶性離子成份分析方法……………………………. 3-9
3-3-3 金屬元素成份分析方法………………………………. 3-10
3-3-4 碳成份分析方法………………………………………. 3-11
3-4 品保與品管………………………………………………… 3-12
3-4-1 採樣方法之品保與品管………………………………. 3-12
3-4-2 分析方法之品保與品管………………………………. 3-13
3-5 大氣懸浮微粒之污染源解析法…………………………… 3-15
3-5-1 富集因子分析法………………………………………. 3-15
3-5-2 主成份分析法…………………………………………. 3-16
3-5-3 化學質量平衡受體模式………………………………. 3-16
3-5-4 逆軌跡模式……………………………………………. 3-18
第四章 結果與討論……………………………………………….. 4-1
4-1採樣期間金門地區氣象條件分析…………………………. 4-1
4-1-1 風速及風向……………………………………………. 4-1
4-1-2 相對濕度………………………………………………. 4-5
4-2懸浮微粒濃度變化趨勢分析……………………………….. 4-7
4-2-1懸浮微粒濃度日夜及季節變化趨勢分析…………….. 4-7
4-2-2 密集性採樣日夜PM10濃度變化趨勢及粒徑分佈分析 4-14
4-2-3 懸浮微粒傳輸路徑分析………………………………. 4-25
4-3 懸浮微粒化學成份變化趨勢分析………………………… 4-29
4-3-1 懸浮微粒中水溶性離子成份日夜及季節變化趨勢分 析……………………………………………………….4-29
4-3-2 懸浮微粒中金屬元素成份之日夜及季節變化趨勢分析……………………………………………………….4-40
4-3-3 懸浮微粒中碳成份之日夜及季節變化趨勢分析……. 4-47
4-3-4 不同傳輸路徑化學成份之消長………………………. 4-55
4-4 廈門灣周邊污染源排放懸浮微粒之指紋特徵…………… 4-59
4-5 廈門灣污染源相關性分析………………………………… 4-68
4-5-1 富集因子解析化學成份與污染源相關性……………. 4-68
4-5-2 主成份分析法判別主要污染源種類…………………. 4-69
4-5-3 化學質量平衡法解析污染源貢獻量…………………. 4-83
第五章 結論與建議………………………………………………… 5-1
5-1 結論……………………………………………………….. 5-1
5-2 建議……………………………………………………….. 5-3
參考文獻
附錄A 分析方法之品保品管
附錄B 分析儀器之檢量線
參考文獻 References
參考文獻
Alleman, L.Y., Lamaison, L., Perdrix, E., Robache, A., and Galloo, J.C., “PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone,” Atmospheric Research, 96, 612-625, 2010.
Appel, B.R. and Tokiwa, Y., “Atmospheric particulate nitrate sampling errors due to reactions with particulate and gaseous strong acids,” Atmospheric Environment, 15, 1087-1089, 1981.
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., “Analysis of carbonaceous material in southern California atmospheric aerosols,” Environmental Science and Technology, 13, 98-104, 1979.
Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., and Ray, B.J., “Relationships among aerosol constituents from Asia and the North Pacific during PEM-West,” Geophysical Research, 101(D1), 2011-2023, 1996.
Brunciak, P.A., Dachs, J., Franz, T.P., Gigliotti, C.L., Nelson, E.D., Turpin, B.J., and Eisenreich, S.J., “Polychlorinated biphenyls and particulate organic/elemental carbon in the atmosphere of Chesapeake Bay, USA,” Atmospheric Environment, 35, 5663-
5677, 2001.
Chan, Y.C., Simpson, G.H., Mctainsh, P.D., Vowles, P.D., Cohen, D.D., and Bailey, G.M., “Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modeling,” Atmospheric Environment, 33, 3251-3268, 1999.
Cheng, Y.H. and Tsai, C.J., “Evaporation loss of ammonium nitrate particles during filter sampling,“ Aerosol Science, 28(8), 1553-1567, 1997.
Chio, C.P., Cheng, M.T., and Wang, C.F., “Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan,” Atmospheric Environment, 38, 6893-6905, 2004.
Contini, D., Genga. A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., and Guascito, M.R., “Characterisation and source apportionment of PM10 in an urban background site in Lecce,” Particuology, 2010.
Diana, G.T., Arantza, E.F., Pablo, C.F., Marisela, M.F., Armando R.H., Rafael R.V., and Antonio, H.M., “Effects of meteorology on diurnal and nocturnal levels of priority polycyclic aromatic hydrocarbons and elemental and organic carbon in PM10 at a source and a receptor area in Mexico City,” Atmospheric Environment, 43, 2693-2699, 2009.
Dongarra, G., Mannoa, E., Varricaa, D., and Vultaggio, M., “Mass levels, crustal component and trace elements in PM10 in Palermo, Italy,” Atmospheric Environment, 41, 7977-7986, 2007.
Dongarra, G, Manno, E., Varrica, D., Lombardo, M., and Vultaggio, M., “Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates,” Atmospheric Environment, 44, 5244-5257, 2010.
Eleni, T., George, A., Aikaterini, B., Nikolaos, M., Kostas, N., and Constantini, S., “Chemical composition and mass closure of ambient PM10 at urban sites,” Atmospheric Environment, 44, 2231-2239, 2010.
Fang, G.C., Chang, C.N., Wu, Y.S., Fu, P.C., Yang, D.G., and Chu, C.C., “Characterization of chemical species in PM2.5 and PM10 aerosols in suburban and rural sites of central Taiwan,” Science of the Total Environment, 234, 203-212, 1999.
Fang, G.C., Chang, C.N., Wu, Y.S., Wang, V., Fu, P.C., Yang, D.G., Chen, S.C., and Chu, C.C., “The study of fine and coarse particles, and metallic elements for the daytime and night-time in a suburban area of central Taiwan, Taichung,” Chemosphere, 41, 639-644, 2000.
Fang, G.C., Wu, Y.S., Chena, J.C., Fu, P.C., Chang, C.N., and Chen, M.H., “Metallic elements study on fine and coarse particulates during daytime and nighttime periods at a traffic sampling site,” Science of the Total Environment, 345, 61-68, 2005.
Favez, O., Cachier, H., Sciare, J., Alfaro S.C., El-Araby, T.M., Harhash, M.A., and Abdelwahab, M.M., “Seasonality of major aerosol speciesand their transformations in Cairo megacity,” Atmospheric Environment, 42, 1503-1516, 2008.
Feeley, J.A. and Liljestrand, H.M., “Source contributions to acid precipitation in Texas,“ Atmospheric Environment, 31, 295-300, 1983.
Golomb, D., Ryan, D., Eby, N., Underhill, J., and Zemba, S., “Atmospheric deposition of toxics onto Massachusetts Bay - I. metals,” Atmospheric Environment, 31(9), 1349-1359, 1997.
Gomiscek, B., Frank, A., Puxbaum, H., Stopper, S., Preining, O., and Hauck, H., “Case study analysis of PM burden at an urban and a rural site during the AUPHEP project,” Atmospheric Environment, 38, 3935-3948, 2004.
Harrison, R.M., Deacon, A.R., and Jones, M.R., “Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.),” Atmospheric Environment, 31, 4103-4117, 1997.
Hinds, W.C., Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles, John Willey & Sons: New York, 1999.
Ho, K.F., Leea, S.C., Chow, J.C., and Watson, J.G., “Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong,” Atmospheric Environment, 37, 1023-1032, 2003.
Hopke, P.K., Casuccio, G.S., “Scanning Electron Microscopy”, In: Hopke, P.K., editor, “Receptor Modeling for Air Quality Management”, Elsevier Science Publishing Company Inc., New York, 149-212, 1991.
Huang, L.K., Yuan, C.S., Wang, G.Z., and Wang. K., “Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin, China,” Particuology, 9(1), 32-38, 2011.
Kaneyasu, N., Ohta, S., and Murao, N., “Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan,” Atmospheric Environment, 29, 1559-1568,1995.
Kong, S.F., Han, B., Bai, Z.P., Chen, L., Shi, J.W., and Xu, Z., “Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China,” Science of the Total Environment, 408, 4681-4694, 2010.
Kulshrestha, A., Satsangi, P.G., Masih, J., and Taneja, A., “Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India,” Science of the Total Environment, 407, 6196-6204, 2009.
Lim, J.M., Lee, J,H., Moona, J.H., Chung, Y.S., and Kim, K.H., “Airborne PM10 and metals from multifarious sources in an industrial complex area,” Atmospheric Research, 96, 53-64, 2010.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Lonati, G., Giugliano, M., and Ozgen, S., “Primary and secondary components of PM2.5 in Milan (Italy),” Environment International, 34, 665-670, 2008.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., and Jensen, D.T., “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley,” Journal of The Air & Waste Management Association, 47, 167-175,1997.
Manahan, S.E., “Environmental Chemistry,” 5th Edition, Lewis Publishers, Inc., Chelsea, 1991.
Mugica, V., Ortiz, E., Molina, L., Vizcaya-Ruiz, A.D., Nebot, A., Quintana, R., Aguilar, J., and Alcantara, E., “PM composition and source reconciliation in Mexico City,” Atmospheric Environment, 43, 5068-5074, 2009.
Na, K., Sawant, A.A., Song, C., and Cocker III, D.R., “Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California,” Atmospheric Environment, 38, 1345-1355, 2004.
Pakkanen, T.A., “Study of formation of coarse particle nitrate aerosol,” Atmospheric Environment, 30, 2475-2482, 1996.
Querol, X., Alastuey, A., Viana, M.M., Rodriguez, S., Artinano, B., Salvador, P., Garcia do Santos, S., Fernandez Patier, R., Ruiz, C.R., de la Rosa, J., Sanchezde-la-Campa, A., Menendez, M., and Gil, J.I., “Speciation and origin of PM10 and PM2.5 in Spain,” Aerosol Science, 35, 1151-1172, 2004.
Seinfeld, J.H. and Pandis, S.N., “Atmospheric chemistry and physics : from air pollution to climate change,” Wiley-Interscience, New York , 1998.
Seto, S., Oohara, M., and Ikeda, Y., “Analysis of precipitation chemistry at a rural site in Hiroshima Prefecture, Japan,” Atmospheric Environment, 34, 621-628, 2000.
Sudheer, A.K. and Sarin, M.M., “Carbonaceous aerosols in MABL of Bay of Bengal: Influence of continental outflow,” Atmospheric Environment, 42, 4089-4100, 2008.
Taylor, S.R., “Abundance of chemical elements in the continental crust: A new table,” Geochimica et Cosmochimica Acta, 28, 1237-1385, 1964.
Turpin, B.J. and Huntzicker, J.J., “Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQR,” Atmospheric Environment, 29, 3527-3544, 1995.
Turias, I.J., Gonzalez, F.J., Martin, M.L., and Galindo, P.L., “A competitive neural network approach form meteorological situation clustering,” Atmospheric Environment, 40, 532-541, 2006.
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., and Samara, C., “Chemical composition and mass closure of ambient PM10 at urban sites,” Atmospheric Environment, 44, 2231-2239, 2010.
Vecchi, R., Marcazzan, G., and Valli, G., “A study on nighttime-
daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy),” Atmospheric Environment, 41, 2136-2144, 2007.
Watson, J.G., “The Science of Fine Particulate Matter,” Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5, 1-14, 1998.
Wall, S.M., John, W., and Ondo, J.L., “Measurement of aerosol size distributions for nitrate and major ionic species,” Atmospheric Environment, 22, 1649-1656 ,1988.
Wu, Y., Hao, J., Fu, J., Wang, Z., and Tang, U., “Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China,” Science of the Total Environment, 317, 159-172, 2003.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., and Ye, B., “The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China,” Atmospheric Environment, 36, 4223-4234, 2002.
Yuan C.S., Liu, Y.C., Hai, C.X., and Zhao, M., “Chemical approaches for identifying the source areas of Asian dusts sampled at the Pescadores Islands, Taiwan,” presented at the International Symposium on Ambient Particulate Matter-Techniques and Policies for Pollution Prevention and Control, Nankai University, Tianjin, China, July 14-19, 2007.
Yuval, Broday, D.M., “High-resolution spatial patterns of long-term mean concentrations of air pollutants in Haifa Bay area,” Atmospheric Environment, 40, 3653-3664, 2006.
Zhao, J.P., Zhang, F.W., Xu,Y., and Chen, J.S., “Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen,” Atmospheric Research, 99, 546-562, 2011.
Zhang, R.J. and CAO, J.J., Lee, S,C., Shen, Z.X., and Ho, K.F., “Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing,” Environmental Sciences, 19, 564-571, 2007.
Zhang, X. and McMurry, P.H., “Theoretical analysis of evaporative losses from impactor and filter deposits,“ Atmospheric Environment, 21, 1779-1789, 1987.
Zhang, X. and McMurry, P.H., “Evaporative losses of fine particulate nitrates during sampling,“ Atmospheric Environment, 26A, 3305-3315, 1992.
Zhang, H., “An assessment of heavy metals contributed by industry in urban atmosphere from Nanjing, China,” Environmental Monitoring Assessment, 154, 451-458, 2009.
Zhu, L., Tang, J., Lee, B., Zhang, Y., Zhang, F., “Lead concentrations and isotopes in aerosols from Xiamen, China,” Marine Pollution Bulletin, 60, 1946-1955, 2010.
Zhu, L., Huang, X., Shi, H., Cai, X., and Song, Y., “Transport pathways and potential sources of PM10 in Beijing,” Atmospheric Environment, 45, 594-604, 2011.
Zhuang H., Chen, C.K., Fang, M., and Wexler, A.S., “Formation of nitrate and non-sea-salt sulfate on coarse particles, ”Atmospheric Environment, 33, 4223-4233, 1999.
邵承宗,“大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究”,國立中山大學環境工程研究所碩士論文,2001。
樓基中、袁中新,“高雄市都會區酸沉降及懸浮微粒重金屬成份調查研究”,高雄市環保局研究報告,1995。
底宗鴻,“高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討”,國立中山大學環境工程研究所碩士論文,2008。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討”,國立中山大學環境工程研究所碩士論文,2009。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
曾國書,“屏東都會區粗細懸浮微粒特性之研究”,國立屏東科技大學環境工程與科學系碩士論文,2006。
賴威帆,“應用氣流軌跡與大氣微粒成份解析粒狀物污染事件日特徵”,國立成功大學環境工程學系碩士論文,2009。
蔡士鳴,“大氣中懸浮微粒含碳成分之分佈與來源”,國立成功大學環境工程學系碩士論文,2002。
江勝偉,“氣象因子與大氣懸浮微粒含碳量變異關聯性研究”,國立成功大學環境工程學系碩士論文,2007。
鄭曼婷,“台中沿海及都會區氣膠特性及來源分析”,國科會/環保署科技合作研究計劃期末報告,1999。
鄭曼婷,“台中及南海地區大氣懸浮微粒的化學組成及其污染源貢獻量解析”,中華民國環境工程學會空氣污染控制技術研討會,2010。
林斐然,“東南亞河川流域及海洋之碳循環--子計畫九:南海海域大氣中微量元素及營養鹽成分之傳輸及沉降通量研究(I)研究成果報告”,行政院國家科學委員會專題研究計畫成果報,2006。
王證權,“亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性”,國立中央大學環境工程研究所碩士論文,1991。
黃美倫,“中部空品區大氣氣膠中水溶性離子微粒之特性探討”,國立中興大學環境工程學系碩士論文,2001。
劉育甫、蔡協宏、袁中新、洪崇軒、林啟燦、錢立行,“海島地區懸浮微粒物化特性分析-以琉球嶼為例”,第六屆海峽兩岸氣膠技術研討會論文,2009。
蔡協宏,“南台灣陸域及鄰近海域受海陸風及東北季風影響之空氣污染物傳輸及擴散研究”,國立中山大學環境工程研究所博士論文,2010。
徐玉眉,“海鹽氣膠氯損失之研究”,國立台灣大學環境工程研究所碩士論文,2000。
邱宏城,“台北地區能見度預報模式建立及視覺空氣品質改善策略研擬”,國立中山大學環境工程研究所碩士論文,2009。
鐘博章,“東海南部大氣中金屬元素之濃度、來源及通量研究”,國立台灣大學海洋研究所碩士論文,2002。
黃鈴珺,“彭佳嶼海域大氣懸浮微粒中金屬元素的濃度、來源及粒徑分佈研究”,國立台灣大學海洋研究所碩士論文,2001。
劉乙琦,“澎湖地區之亞洲沙塵物化特性分析及沙塵來源解析”,國立中山大學環境工程研究所碩士論文,2008。
金門縣環境保護局,“97年度高濃度懸浮微粒污染原因探討及貢獻量推估計畫期末報告”,2008。
金門縣環境保護局,“99年度金門縣高濃度懸浮微粒監測調查分析計畫期末報告”,2009。
金門縣環境保護局,“98年度金門縣空氣污染防制計畫書”,2009。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code