Responsive image
博碩士論文 etd-0831112-101541 詳細資訊
Title page for etd-0831112-101541
論文名稱
Title
磷酸鋰鐵陰極材料於雙腈系電解液之電化學性能
Electrochemical performance of LiFePO4 cathode with dinitrile-based electrolytes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-24
繳交日期
Date of Submission
2012-08-31
關鍵字
Keywords
單腈、雙腈、高電壓、電解液
nitrile, dinitrile, high-voltage, electrolyte
統計
Statistics
本論文已被瀏覽 5678 次,被下載 1121
The thesis/dissertation has been browsed 5678 times, has been downloaded 1121 times.
中文摘要
本論文主要以雙腈中的戊二腈作為高電壓電解液,並加入單腈中的正丁腈來降低電解液黏度,且添加碳酸亞乙烯酯形成鈍化層避免鋰金屬和單腈反應,實驗利用掃描式電子顯微鏡觀察電解液對電極表面影響並以電化學儀器進行測試、分析與歸納以獲得雙腈和單腈最佳比例且利用高解析X-光電子能譜儀推測鈍化層生成物種,而在實驗測試中可發現當雙腈和單腈比為6:4時,且搭配5wt%碳酸亞乙烯酯為最佳比例,可測得氧化電位約在5.7 V,放電電容量在5C速率下為約80 mAhg-1 ,且在溫度為30 oC下,循環壽命測試中,放電電容量仍可維持第五次放電電容量的94.35%。
Abstract
In this thesis, high-voltage nitrile-based electrolytes for lithium ion batteries were investigated. The electrolytes were composed of nitrile, dinitrile, and vinylene carbonate (VC) as an additive. Scanning electron microscopy showed the change of surface morphology of electrodes. The chemical compositions of the solid electrolyte interface were characterized by high resolution X-ray photo electron spectroscopy (HR-XPS). We found that the optimal ratio of dinitrile to nitrile is 6 to 4 by volume in terms of electrochemical performances. 5wt% VC as the additive has the enhanced electrochemical performances. The oxidation potential of the nitrile-based electrolytes can reach to 5.7 V. The discharge capacity of the Li||LiFePO4 cell with the nitrile-based electrolyte is about 80 mAhg-1 at a charge/discharge rate of 5 C under 30 oC, and its discharge efficiency after 100 cycles still keeps 94.35%.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xi
第一章 緒論 1
1.1 前言 2
1.2 一次電池和二次電池簡介 2
1.2.1 一次電池 2
1.2.2 二次電池 3
1.3 鋰電池歷史和工作原理 5
1.4 研究目的與動機 7
1.5 論文架構 8
1.6 參考文獻 9
第二章 文獻回顧 10
2.1 鋰電池基本組成 11
2.1.1 正極材料、負極材料 11
2.1.2 電解液 14
2.1.2.1 理想液態電解液所具備條件 14
2.1.2.2 有機溶劑電解液基本組成 15
2.1.2.3 有機溶劑電解液對固液介面層影響與介紹 24
2.2 參考文獻 25
第三章 實驗條件與步驟 29
3.1 實驗材料與藥品 30
3.2 實驗儀器與原理 31
3.2.1 實驗儀器 31
3.2.2 儀器原理 31
3.2.2.1 電化學分析儀 (Electrochemical Analyzer Instrument) 31
3.2.2.2 傅立葉轉換紅外線光譜儀 (Fourier transform infared spectroscopy,FT-IR) 33
3.2.2.3 核磁共振儀 (Nuclear Magnetic Resonance,NMR) 33
3.2.2.4 單晶X-ray繞射儀 (Single-crystal diffractometer) 34
3.2.2.5 場發射型掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope,FE-SEM) 34
3.2.2.6 高解析電子能譜儀 (High Resolution X-ray photoelectron Spectroscopy,HRXPS) 35
3.3 研究流程 36
3.4 電解液與極片製備 36
3.4.1 實驗電解液調配 36
3.4.2 正極材料極片(LiFePO4)製作 37
3.5 電化學測試條件 38
3.6 電池組裝步驟 39
3.7 電池性能測試步驟與條件 40
第四章 結果與討論 43
4.1 不同比例雙腈和單腈在添加碳酸亞乙烯酯之表現行為 44
4.1.1 電化學測試 44
4.1.1.1 直線掃描伏安法 44
4.1.1.2 離子導電度測試 52
4.1.1.3 循環伏安法 54
4.1.2 電池性能測試 58
4.1.2.1 電池充放電測試 58
4.1.2.2 電池循環壽命測試 62
4.1.2.3 AC交流阻抗測試 65
4.1.3 極片表面觀察 70
4.1.3.1 掃描式電子顯微鏡 70
4.1.4 結論 74
4.2 雙腈和單腈在添加不同碳酸亞乙烯酯量之表現行為 76
4.2.1 電化學測試 76
4.2.1.1 直線掃描伏安法 76
4.2.1.2 離子導電度測試 77
4.2.1.3 循環伏安法 79
4.2.2 電池性能測試 81
4.2.2.1 電池充放電測試 81
4.2.2.2 電池循環壽命測試 84
4.2.2.3 AC交流阻抗測試 86
4.2.3 極片表面觀察 90
4.2.3.1 掃描式電子顯微鏡 90
4.2.3.2 高解析電子能譜儀 94
4.2.4 結論 100
4.3 參考文獻 102
第五章 結論 103
5.1 總結 104
附錄 105

參考文獻 References
1-6 參考文獻
[1] http://www.phy.ntnu.edu.tw/demolab/html.php?htm=txt/battery5
[2] http://people.cs.nctu.edu.tw/~msli/18/study/4_3.doc
[3] 吳宇平, 戴曉兵, 馬軍旗, 程預江. “鋰離子電池-應用與實踐”, 北京 化學工 業出版社, (2004)
[4] http://blog.mrbattery.com.tw/?p=17
[5] J. M. Tarascon, M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414 (2001) 359.
[6] J. Hajek, French Patent, 8 (1949)10.
[7] J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte”, J. Power Sources, 74 (1998) 219.
[8] A. Manthiram, J. Kim, “Low Temperature Synthesis of Insertion Oxides for Lithium Batteries’’, Chem. Mater, 10 (1998) 2895.
2-2 參考文獻
[1] T. Ohzuku, H. Konori, K. Sawai, T. Hirai, “Natural graphite as an anode for rechargeable nonaqueous cells”, Chem. Express., 5 (1990) 733.
[2] G. G. Amatucci, J. M. Tarascon, L. C. Klein, “Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries”, Solid State Ionics, 83 (1996) 167.
[3] D. H. Jang, Y. J. Shin, S. M. Oh, “Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells”, J. Electrochem. Soc., 143 (1996) 2204.
[4] 黃可龍, 王兆翔, 劉素琴, 馬振基. “鋰離子電池 原理與技術”, 五南出版社, (2010)
[5] 費定國, “鋰離子電池在電動車市場之展望”, 工業材料雜誌 (2005).
[6] H. Azuma, H. Imoto, S. Yamada, K. Sekai, “Advanced carbon anode materials for lithium ion cells”, J. Power Sources, 81-82 (1999) 1.
[7] A. N. Dey, B. P. Sullivan, “The electrochemical decomposition of propylene carbonate on graphite”, J. Electrochem. Soc., 117 (1970) 222.
[8] M. Arakawa, J. Yamaki, “The cathodic decomposition of propylene carbonate in lithium batteries”, J. Electroanal. Chem., 219 (1987) 213.
[9] R. McMillan, H. Slegr, Z.X. Shu, W. Wang, “Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes’’, J. Power Sources, 81-82 (1999) 20.
[10] G. H. Wrodnigg, J. O. Besenhard, M. Winter, “Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes’’, J. Electrochem. Soc., 146 (1999) 470
[11] H. Kaneko, K. Sekine, T. Takamura “Power capability improvement of LiBOB/PC electrolyte for Li-ion batteries”, J. Power Sources, 146 (2005) 142.
[12] S. A. Campbell, C. Bowes, R. S. McMillan, “The electrochemical behaviour of tetrahydrofuran and propylene carbonate without added electrolyte”, J. Electroanal. Chem., 284 (1990) 195.
[13] 吳宇平, 戴曉兵, 馬軍旗, 程預江. “鋰離子電池-應用與實踐”, 北京 化學工 業出版社, (2004)
[14] K. Hayashi, Y. Nemoto, S. Tobishima, J. Yamaki, “Mixed solvent electrolyte for high voltage lithium metal secondary cells”, Electrochimica Acta, 44 (1999) 2337.
[15] A. Abouimrane, I. Belharouak, K. Amine, “Sulfone-base,d electrolytes for high-voltage Li-ion batteries”, Electrochem. Commun., 11 (2009) 1073.
[16] Y. Abu-Lebdeh, I. Davidson, “New electrolytes based on glutaronitrile for high energy/power Li-ion batteries”, J. Power Sources, 189 (2009) 576.
[17] Y. Abu-Lebdeh, I. Davidson, “High-voltage electrolytes based on adiponitrile for Li-Ion batteries’’, J. Electrochem. Soc., 156 (2009) A60.
[18] V. R. Koch, J. H. Young, “The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes’’, J. Electrochem. Soc., 125 (1978) 1365.
[19] M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage’’, J. Power Sources, 196 (2011) 9743.
[20] C. Taubert, M. Fleischhammer, M. Wohlfahrt-Mehrens, U. Wietelmann, T. Buhrmester, “LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2/graphite”, J. Electrochem. Soc., 157 (2010) A721.
[21] E. G. Shima, T. H. Nama, J. G. Kima, H. S. Kimb, S. I. Moonb, “Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retant additive’’, J. Power Sources, 172 (2007) 919.
[22] Q. Wang, J. Sun, X. Yao, “4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte’’, Electrochem. Solid-State Lett., 8 (2005) A467.
[23] H. J. Santner, K. C. Moller, J. Ivanco, M. G. Ramsey, F. P. Netzer, S. Yamaguchi, J. O. Besenhard, M. Winter, “Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups”, J. Power Sources, 119-121 (2003) 368.
[24] Y. K. Choia, K. Chunga, W. S. Kimb, Y. E. Sungb, S. M. Park, “Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries’’, J. Power Sources, 104 (2002) 132.
[25] M. Morita, H. Hayashida, Y. Matsuda, “Effects of crown ether addition to organic electrolytes on the cycling behavior of the TiS2 electrode”, J. Electrochem. Soc., 134 (1987) 2107.
[26] M. Morita, H. Hayashida, Y. Matsuda, “A novel electrolyte solvent for rechargeable lithium and lithium-ion batteries”, J. Electrochem. Soc., 143 (1996) 4047.
[27] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, “Challenges in the development of advanced Li-ion batteries: a review”, Energy Environ. Sci., 4 (2011) 3243.
4-3 參考文獻
[1] http://www.lasurface.com/database/elementxps.php
[2] L. Yang, B. Ravdel, B. L. Lucht, “Electrolyte reactions with the surface of high boltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries’’, Electrochem. Solid-State Lett., 13 (2010) A95.
[3] Anna Andersson (2001), Surface phenomena in Li-ion batteries, presented at Uppsala university in 2001.
[4] H. Cheng, C. Zhu, M. Lu, Y. Yang, “Spectroscopic and electrochemical characterization of the passive layer formed on lithium in gel polymer electrolytes containing propylene carbonate”, J. Power Sources, 173 (2007) 531.
[5] K. Naoi, M. Mori, Y. Naruoka, W. M. Lamanna, Radoslav Atanasoskic, " The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]", J. Electrochem. Soc., 146 (1999) 462.
[6] D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson, J. O. Thomas, " A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSIand LiPF6-based electrolytes", J. Mater. Chem., 19 (2009) 82.
[7] H. Ota, T. Akai, H. Namita, S. Yamaguchi, M. Nomura, “XAFS and TOF–SIMS analysis of SEI layers on electrodes”, J. Power Sources, 119-121 (2003) 567.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code