Responsive image
博碩士論文 etd-0901108-113431 詳細資訊
Title page for etd-0901108-113431
論文名稱
Title
矩形基板在化學沉積製程中之液晶熱傳實驗研究
A study for the heat transfer on a rectangular substrate in a CVD process by using transient liquid crystal measurement technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-21
繳交日期
Date of Submission
2008-09-01
關鍵字
Keywords
液晶量測溫度技術、暫態液晶方法、化學氣相沈積
chemical vapor deposition, transient liquid crystals method, liquid crystals measurement temperature technique
統計
Statistics
本論文已被瀏覽 5730 次,被下載 1690
The thesis/dissertation has been browsed 5730 times, has been downloaded 1690 times.
中文摘要
化學氣相沈積法技術常被用來當作是晶圓面板代工的一種製程,而在其基板上表面之熱傳性能可是製程中很重要的影響參數,因此本論文應用了液晶熱傳量測的技術,建立起暫態液晶熱傳量測實驗方法系統並運用模擬化學氣相沈積過程技術-於矩型腔體內使用低速空氣噴流通過噴嘴偏心板出口衝擊到矩形傾斜角度基板之熱傳實驗研究分析。最後,實驗結果經由回歸分析之後,將可推導出紐賽數(Nu)與雷諾數(Re)、分離距(H/D)、矩形傾斜基板角度(θ)三者關係之間的熱傳係數實驗公式。
Abstract
Chemical vapor deposition technology is often by using in the one of Wafer panel Foundry process, the heat transfer coefficient on the top substrate surface is the very important influence parameter in the manufacturing process. For this reason, the main object of this thesis is apply liquid crystals heat transfer measurement technique to set up a temperature measurement experiment system of transient thermochromatic liquid crystals and application simulating CVD process technique. Furthermore, an experimental is carried out in the present study to investigate the characteristics of heat transfer experiment study analysis resulting from a low speed air jet through the nozzle eccentric disc outlet impinging onto a rectangular acclivitous angles substrate confined in a vertical rectangular chamber. Finally, heat transfer coefficient empirical equations of the three relationship are proposed to Nusselt number correlate the effect of Reynolds number、Separation distances are Ratio of outlet and acclivitous substrate surface、Angles of rectangular acclivitous substrate.
目次 Table of Contents
目錄
表目錄 II
圖目錄 III
學術用語 VI
摘要 VIII
章節 頁數
第一章 前言 1
1-1 研究背景和動機 1
1-2 文獻回顧 4
1-3 研究重點 9
第二章 實驗相關方法和其理論 11
2-1 液晶量測技術及其基本理論 11
2-2 實驗規劃 18
第三章 實驗裝置及實驗步驟 20
3-1 實驗設備 20
3-2 實驗前置作業準備 25
3-3 實驗步驟 27
第四章 結果與討論 30
4-1 雷諾數對熱傳的影響 31
4-2 分離距對熱傳的影響 32
4-3 矩形傾斜基板角度對熱傳的影響 33
4-4 熱傳實驗公式 34
第五章 結論 36
參考文獻 83
附錄A 86
表目錄
表1. 實驗測試之無因次範圍 38
圖目錄
圖1. 化學氣相沈積成膜示意圖 39
圖2. 膽固醇型液晶分子排列方式圖 40
圖3. 半無窮區間其一維暫態熱傳導系統圖 41
圖4. 進氣口溫度曲線 42
圖5. 流體衝擊基板和部份尺寸參數示意圖 43
圖6. 實驗系統架構圖 44
圖7. 噴嘴整體示意圖 45
圖8. 氣體到達基板上表面時間示意圖 46
圖9. 噴嘴整流區段測溫點示意圖 47
圖10. 噴嘴整體及腔體實際照片圖 48
圖11. 加熱器及質量流率控制器實際照片圖 49
圖12. 實驗傾斜基板示意圖 50
圖13. 偏心出口板示意圖 51
圖14. 噴嘴零件示意圖(a)(b) 52
圖15. 實驗傾斜基板支撐座示意圖 53
圖16. 實驗矩形垂直腔體示意圖 54
圖17. 光場配置與影像擷取示意圖 55
圖18. 液晶達至最大綠色光強度時的溫度校正圖 56
圖19-1 熱對流係數分佈圖(θ=3 ,Re=114 ,H/D=0.176~0.441) 57
圖19-2 熱對流係數分佈圖(θ=3 ,Re=139 ,H/D=0.176~0.441) 58
圖19-3 熱對流係數分佈圖(θ=3 ,Re=164 ,H/D=0.176~0.441) 59
圖19-4 熱對流係數分佈圖(θ=6 ,Re=114 ,H/D=0.176~0.441) 60
圖19-5 熱對流係數分佈圖(θ=6 ,Re=139 ,H/D=0.176~0.441) 61
圖19-6 熱對流係數分佈圖(θ=6 ,Re=164 ,H/D=0.176~0.441) 62
圖19-7 熱對流係數分佈圖(θ=10 ,Re=114 ,H/D=0.176~0.441) 63
圖19-8 熱對流係數分佈圖(θ=10 ,Re=139 ,H/D=0.176~0.441) 64
圖19-9 熱對流係數分佈圖(θ=10 ,Re=164 ,H/D=0.176~0.441) 65
圖20-1 Re對熱流場的影響
(a) =0.176 (b) =0.265 66
圖20-2 Re對熱流場的影響
(c) =0.353 (d) =0.441 67
圖21-1 θ對熱流場的影響
(a) =0.176 (b) =0.265 68
圖21-2 θ對熱流場的影響
(c) =0.353 (d) =0.441 69
圖22-1 Re=114時,平均熱對流係數於不同基板角度中隨著分離距增加的變化情形 70
圖22-2 Re=139時,平均熱對流係數於不同基板角度中隨著分離距增加的變化情形 71
圖22-3 Re=164時,平均熱對流係數於不同基板角度中隨著分離距增加的變化情形 72
圖23-1 Re=114時,平均紐賽數 於不同基板角度中隨著分離距增加的變化情形 73
圖23-2 Re=139時,平均紐賽數 於不同基板角度中隨著分離距增加的變化情形 74
圖23-3 Re=164時,平均紐賽數 於不同基板角度中隨著分離距增加的變化情形 75
圖24-1 θ=3時,平均紐賽數 於不同雷諾數(Re)中隨著分離距增加的變化情形 76
圖24-2 θ=6時,平均紐賽數 於不同雷諾數(Re)中隨著分離距增加的變化情形 77
圖24-3 θ=10時,平均紐賽數 於不同雷諾數(Re)中隨著分離距增加的變化情形 78
圖25-1 實驗與線性迴歸結果關係圖(3度基板) 79
圖25-2 實驗與線性迴歸結果關係圖(6度基板) 80
圖25-3 實驗與線性迴歸結果關係圖(10度基板) 81
圖25-4 實驗與線性迴歸結果關係圖(所有角度基板) 82
參考文獻 References
1. 莊達人,VLSI製造技術,高立出版社,1999.
2. 顧鴻壽,光電液晶平面顯示器-技術基礎及應用,新文京開發出版社, chapter 7 (1999).
3. Stringfellow G. B., Organometallic Vapor Phase Epitaxy: Theory and Practice, Academic Press, San Diego, chapter 5 (1989).
4. Morosanu, C. E., Thin Films by Chemical Vapor Deposition, Elsevier, USA,1990.
5. Smith, D.L.,Thin Film Deposition principle & practice, Mcgraw-Hill, USA,1995.
6. 黃榮泰,“單噴流於靜止及旋轉通道內衝擊冷卻現象研究”,國立中山大學機電工程研究所博士論文,2003.
7. Ma, C. F. , Zhuang, Y. , Lee, S. C., and Gomi, T. “Impingement Heat Transfer and Recovery Effect with Submerged Jets of Large Prandtl Number Liquid-II. Initially Laminar Confined Slot Jets”, Int. J. Heat and Mass Transfer, 1997, Vol. 40, pp. 1491-1500.
8. Chung, Y. M. , Luo, K. H. , and Sandham, N. D. “Numerical study of momentum and heat transfer in unsteady impinging jets”, Int. J. Heat Mass Flow, 2002, Vol. 23, pp. 592-600.
9. Rahimi, M. , Owen, I., and Mistry, J. “Impingement Heat Transfer in an under-expanded axisymmetric air jet”, Int. J. Heat and Mass Transfer, 2003, Vol. 46, pp. 263-272.
10. Liu, X. , Lienhard, J. H., and Lombara, J. S. “Convective Heat Transfer by Impingement of Circular Liquid Jets”, Journal of Heat Transfer, 1991, Vol. 113, pp. 571-582.
11. Huber, A. M. and Viskanta, R., “Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets”, International Journal of Heat and Mass Transfer, Vol. 37, No. 18, pp. 2859-2869, 1994.
12. Arjocu, S. C. and Liburdy, J. A., “ Near Surface Characterization of an Impinging Elliptic Jet Array”, Journal of Fluids Engineering, Vol. 121, No. 3, pp. 384-390, 1999.
13. Copper, T. E. , Field, R. J. , and Meyer, J. F. “Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer.”,Journal of Heat Transfer, 1975 , pp. 442-450.
14. Ichimiya, K. ,Akio, N. ,Kunugi T. , and Mitsushiro, k. , “Fundamental Study of Heat Transfer and Flow Situation Around a Spacer(in the case of a cylindrical rod as a spacer)”, Int. J. Heat Mass Transfer, 1988, Vol. 31 , No. 11 , pp. 2215-2225.
15. Ichimiya, K. ,Akio, N. ,and Kunugi, T. , “A Fundamental Study of the Heat Transfer and Flow Situation Around Spacers(a single row of several cylindrical rods in cross flow)” ,Int. J. Heat Mass Transfer, 1990, Vol. 33,No. 11,pp. 2451-2462.
16. Baughn, J. W. , Ireland, P. T. , Jones, T. V. “A Comparison of the Transient and Heated-Coating Methods for the Measurement of Local Heat Transfer Coefficients of a Pin Fin.”,Journal of Heat Transfer,1989,Vol. 111,pp. 877-881.
17. Goldstein, R. J. and Timmers, J. F. , "Visualization of Heat Transfer from Arrays of Impinging Jets", Int. J. Heat and Mass Transfer, Vol. 25, No. 12, pp. 1857-1868, 1982.
18. Hollworth, B. R. and Durbin, M., "Impingement Cooling of Electronics", J. Heat Transfer, Vol. 114, pp. 607-613, Aug. 1992.
19. Ireland, P.T., and Jones, T.V., “The Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals”, J. Physics E, Vol. 20, pp. 1195-1199, 1987.
20. Camci, C., Kim, K. and Hippensteele, S. A. ,“A new hue capturing technique for the quantitative interpretation of liquid crystal image used in convective heat transfer studies”, ASME, J. Turbomachinary, 1992, Vol. 114, pp. 765-775.
21. Von Wolfersdorf, J. , Hoecker, R. , and Sattelmayer, T. , “A Hybrid Transient Step-Heating Transfer Measurement Technique Using Heater Foils and Liquid-Crystal Thermpgraphy”, Journal of Heat Transfer, 1993, Vol. 115, pp. 319-324.
22. Wang, Z. , Ireland, P. T. , Jones, T. V. , and Davenport, R. , “A Colour Image Processing System for Transient Liquid Crystal Heat Transfer Experiments”, Journal of Turbo machinery, 1996, Vol. 118, pp. 421-427.
23. Ekkad, S. V. and Han, J. C. , “Heat Transfer Inside and Downstream of Cavities Using Transient Liquid Crystal Method”, J. Thermophysics and Heat Transfer, Vol. 10, No. 3, pp. 511-516, 1996.
24. Chyu, M. K. , Ding, H. , Downs, J. P. and Soechting, F. O. ,”Determination of local heat transfer coefficient based on bulk mean temperature using a transient liquid crystals technique”. Experimental Thermal and Fluid Science, Volume 18, Issue 2, Pages 142-149, October 1998.
25. Moffat, R. J. 1990, ”Experimetal heat transfer” Keynote Paper,Kn11,proc. 9th int. Heat transfer Conf.,Jerusalem, Vol. 1,pp. 882-890.
26. Valencia, A. , Fiebig, M. , and Mitra, N. K. , “Influence of heat conduction on determination by liquid crystal thermography ” , 1995, Experimental Heat transfer,8:271-279.
27. Critoph, R. E. , Holland, M. K. and Fisher,M. , “Comparisons of Steady State and Transient Methods for Measurement of Local Heat Transfer in Plate Fin-Tube Heat Exchangers Using Liquid Crystal Thermography with Radiant Heating”, Int. J. Heat and Mass Transfer, Vol. 42, pp. 1-12,1999.
28. Carslaw, H. S. and Jaeger, J. C. , “Conduction of Heat in Solid”s, Oxford University Press, U. K., 1959.
29. Hoecker, R. , “Optimization Of Transient Heat Transfer Measurement Using Thermochromic Liquid Crystal Based On An Error Estimation”, Paper.
30. Moffat, R. J. , “Described the uncertainties in experimental results”,Experimental Thermal and Fluid Science, 1988, Vol. 1, pp. 3-17.
31. 顏昌旭,“暫態液晶實驗方法應用在散熱鰭片局部熱對流係數之研究”,國立中山大學機電工程研究所碩士論文,1999.
32. 楊宗霖,“液晶技術應用於熱交換器管排表面局部熱傳係數之量測研究”,國立中山大學機電工程研究所碩士論文,2000.
33. 王盈智,“暫態液晶量測技術用在電子晶片表面上局部熱傳之實驗研究”,國立中山大學機電工程研究所碩士論文,2001.
34. 李旭富,“應用暫態液晶影像法分析超高密度晶片模組陣列對熱傳之影響”,國立中山大學機電工程研究所碩士論文,2002.
35. 林鉍研,“暫態液晶量測垂直腔體內低速衝擊流之熱傳研究”,國立中山大學機電工程研究所碩士論文,2004.
36. 廖正豪,“應用暫態液晶量測矩形腔體內矩形基板之熱傳實驗分析”,國立中山大學機電工程研究所碩士論文,2005.
37. 蘇俊碩,“矩形LCD製程中矩形基板上之熱傳實驗分析”,國立中山大學機電工程研究所碩士論文,2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code