Responsive image
博碩士論文 etd-0901108-155420 詳細資訊
Title page for etd-0901108-155420
論文名稱
Title
金奈米顆粒披覆之聚二甲基矽氧烷光波導之製作及其區域表面電漿量測應用
Fabrication of PDMS Waveguide Coated with Gold Nano-particles and Its Localized SPR Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-04
繳交日期
Date of Submission
2008-09-01
關鍵字
Keywords
光波導、金奈米顆粒、光纖生物感測器、區域式表面電漿共振
optical biosensor, PDMS, optical waveguide, LSPR, Au nanoparticles
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
本研究提出一種以PDMS高分子材料所製作之新式光波導元件,並進行效能測試與生物感測應用。有別於傳統光纖式感測器,本光學感測器使用PDMS為主要的元件材料。PDMS擁有極佳的光學特性,並具有良好的生物檢測的能力,如:具有高韌性與生物相容性。本製程主要使用鐵氟龍管做為PDMS澆鑄模仁,利用微鑄造製作一PDMS圓柱,由於固化後之PDMS材料折射係數為1.43,藉由此一特性可在折射率較低的媒介中,形成一光波導的架構,其後使用PDMS與傳統塑膠光纖進行連接,形成本研究提出的光波導系統。
為了增加PDMS光波導的效能,本研究進行二次表面塗層,以降低光波導表面因製程所產生的粗糙度;並進行粗糙度改善後的PDMS光波導光損失測試,由1.71 dB/cm降低到1.14 dB/cm。此外本研究使用帶有正電離子的高分子長鏈PDDA,塗佈在PDMS上以吸附帶負電之金奈米顆粒,同時為了增加吸附效率,本實驗使用自行開發之大氣電漿系統,對PDMS進行表面改質。而根據光譜儀與電子顯微鏡圖片可發現,經過大氣電漿改質的PDMS表面,其金奈米顆粒在表面積佔有率上明顯的增加且效果均勻,而其吸收光譜也有明顯的增加。本實驗並以甘油調配不同折射係數溶液,證實本光波導式區域表面電漿共振系統之感測能力,其線性靈敏度分別為7.253 AU/RIU與325.97 nm/RIU。最後將本實驗架構應用在與免標定的核甘酸生物檢測上,利用本光波導系統,在光波導上先修飾上飽和的單股的核甘酸形成一生物探針,並以雜交行為抓取特定序列的目標核甘酸,其過程未經過螢光標定,僅在探針端修飾上硫醇基,其偵測極限約可達10 pM左右。
本研究提出一迅速穩定,成本低廉,尺寸控制容易且精準的光波導製程,利用正負電吸引的方式塗佈一層金奈米顆粒,並成功應用在區域式表面電漿共振針對介電常數改變與生物感測器上。
Abstract
This research proposes a novel polymer-based optical waveguide made with Polydimethylsiloxane (PDMS) for optical detection applications. Alternative to other fiber-based sensor, the proposed optical sensor uses PDMS waveguide as the main sensing component. PDMS has excellent optical properties which is essential for bio-photonic detection, including highly optical transparency, good flexibility and high bio-compatibility.
Uncured PDMS polymer is cast in a Teflon tubing to form the PDMS rod. Since the reflective index of PDMS is as high as 1.43, that the bare PDMS can be an optical waveguide while the reflective index of the surrounding media is smaller than 1.43. The cast PDMS waveguide is then connect with plastic optical fibers to form the proposed optical waveguide system. In order to improve the optical performance of the PDMS waveguide, a surface coating process is used to reduce the surface roughness of the PDMS waveguide. The measured insertion loss with and without performing the surface coating procedure is 1.14 and 1.71dB/cm, respectively. Once the PDMS waveguide is formed, Au nanoparticles (Au-Nps) were coated on the PDMS surface with the assistance of a positive charge polymer of PDDA to form an optical waveguide capable of localized SPR detection. In addition, an atmospheric plasma treating process is used to enhance the coating ratio and speed of Au-Nps. UV-VIS spectrum and the SEM observation of the Au-particle coated PDMS waveguide confirm that the plasma treatment process significantly improves the coating results of Au-Nps.
Liquid samples with different refractive index were used to demonstrate the LSPR sensing ability of the fabricated optical waveguide. The label free DNA detection was demonstrated by the system. The thiolated single strand DNA was modify on the PDMS optical waveguide as a DNA probe and bound with target DNA by DNA hybridization. The detection limit is as low as 10 pM. This research provides a simple and fast fabrication method to fabricate waveguide-based LSPR sensors.
目次 Table of Contents
目錄 I
圖目錄 IV
簡寫表 VIII
符號表 X
摘要 XII
Abstract XIV
第一章 緒論 1
1.1 前言 1
1.2 光纖生物感測器 3
1.3 研究動機與目的 6
1.4 研究方法 7
1.5 論文架構 8
第二章 表面電漿理論與文獻回顧 10
2.1光纖生物感測器基本原理 10
2.1.1瞬逝波 10
2.2表面電漿共振原理 12
2.2.1表面電漿共振 12
2.3 表面電漿共振產生機制 17
2.3.1 稜鏡式表面電漿共振 17
2.3.2 光纖式表面電漿共振 19
2.3.3奈米粒子表面電漿共振 22
2.4 奈米顆粒吸附動力學理論 27
2.5 實驗設計概念 36
第三章 實驗方法 37
3.1 PDMS光波導製程 37
3.1.1 PDMS性質簡介 37
3.1.2 PDMS光波導製程 39
圖3.2 PDMS光波導元件製程圖(a)灌模(b)固化(c)取出成形PDMS(d)表面活化(e)金奈米顆粒吸附(f)與光纖接合 40
3.2製程改善與表面處理 43
3.2.1表面粗糙度改善 43
3.3 金奈米顆粒合成 47
3.4 實驗架構 48
第四章 結果與討論 50
4.1 光波導效率量測 50
4.2 光波導表面大氣電漿處理結果 51
4.3 金奈米顆粒於PDMS表面之吸附動力學 60
4.4 光波導區域式表面電漿共振檢測效能分析 64
4.5 光波導區域式表面電漿共振生物感測之應用 67
第五章 結論 72
5.1 結論 72
5.2 未來展望 74
參考文獻 75
自述 79
參考文獻 References
[1] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B-Chemical, vol. 54, pp. 3-15, 1999.
[2] Y. G. Sun and Y. N. Xia, "Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes," Analytical Chemistry, vol. 74, pp. 5297-5305, 2002.
[3] N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Analytical Chemistry, vol. 74, pp. 504-509, 2002.
[4] S. F. Cheng and L. K. Chau, "Colloidal gold-modified optical fiber for chemical and biochemical sensing," Analytical Chemistry, vol. 75, pp. 16-21, 2003.
[5] S. Underwood and P. Mulvaney, "Effect of the Solution Refractive-Index on the Color of Gold Colloids," Langmuir, vol. 10, pp. 3427-3430, 1994.
[6] M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," Journal of the American Chemical Society, vol. 123, pp. 1471-1482, 2001.
[7] 吳順正, 光纖特性與應用: 全華科技出版社, 1989.
[8] O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Analytical Chemistry, vol. 76, pp. 3269-3283, 2004.
[9] R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today's instrumentation, applications and trends for future development," Fresenius Journal of Analytical Chemistry, vol. 362, pp. 349-373, 1998.
[10] 林愷, 光纖通訊系統: 全華科技出版社, 1990.
[11] M. D. Marazuela and M. C. Moreno-Bondi, "Fiber-optic biosensors - an overview," Analytical and Bioanalytical Chemistry, vol. 372, pp. 664-682, 2002.

[12] J. Zenneck, "Uber die Fortpflanztmg ebener elektro-magnetischer wekken langs einer ebenen leiterflache und ihre Beziehung zur drahtlosen telegraphie," Annals der Physik, vol. 23, pp. 846-886, 1907.
[13] A. Sommerfeld, "Propagation of Waves in wireless telegraphy," Annals der Physik, vol. 28, pp. 665-736, 1909.
[14] R. H. Ritchie, "Citation Classic - Plasma Losses by Fast Electrons in Thin-Films," Current Contents/Engineering Technology & Applied Sciences, pp. 18-18, 1985.
[15] C. J. Powell and J. B. Swan, "Effect of oxidation on the characteristic loss spectra of aluminum and magnesium," Physical Review Letters, vol. 118, pp. 640-643, 1960.
[16] E. A. Stern and R. A. Ferrell, "Surface plasma oscillations of a degenerate electron gas," Physical Review, vol. 120, pp. 130-136, 1960.
[17] R. C. Jorgenson and S. S. Yee, "A Fiberoptic Chemical Sensor-Based on Surface-Plasmon Resonance," Sensors and Actuators B-Chemical, vol. 12, pp. 213-220, 1993.
[18] S. Kawata, "Near-field microscope probes utilizing surface plasmon polaritons," Near-Field Optics and Surface Plasmon Polaritons, vol. 81, pp. 15-27, 2001.
[19] J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, "Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips," Sensors and Actuators B-Chemical, vol. 94, pp. 161-164, 2003.
[20] A. Otto, "Excitation of nonraiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift fur Physik, vol. 216, pp. 398-410, 1968.
[21] E. Kretschmann and H. Reather, "Radiative decay of non-radiative surface plasmons excited by light," Zeitschrift fur Naturforschung, vol. 23, pp. 2135-2136, 1968.
[22] F. Villuendas and J. Pelayo, "Optical Fiber Device for Chemical Sensing Based on Surface-Plasmon Excitation," Sensors and Actuators a-Physical, vol. 23, pp. 1142-1145, 1990.
[23] I. Garces, C. Aldea, and J. Mateo, "4-Layer Chemical Fiber Optic Plasmon-Based Sensor," Sensors and Actuators B-Chemical, vol. 7, pp. 771-774, 1992.

[24] R. C. Jorgenson and S. S. Yee, "Control of the Dynamic-Range and Sensitivity of a Surface-Plasmon Resonance Based Fiber Optic Sensor," Sensors and Actuators a-Physical, vol. 43, pp. 44-48, 1994.
[25] C. C. Jung, R. C. Jorgenson, C. H. Morgan, and S. S. Yee, "Fiber-optic surface plasmon dispersive index sensor for highly opaque samples," Process Control and Quality, vol. 7, pp. 167-171, 1995.
[26] L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, "Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance," Sensors and Actuators B-Chemical, vol. 113, pp. 100-105, 2006.
[27] 郭清葵, 黃俊傑, 牟中原, "金屬奈米粒子的製造," 物理雙月刊, vol. 23, pp. 614-624, 2001.
[28] J. A. Creighton and D. G. Eadon, "Ultraviolet Visible Absorption-Spectra of the Colloidal Metallic Elements," Journal of the Chemical Society-Faraday Transactions, vol. 87, pp. 3881-3891, 1991.
[29] H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A hybrid plasmonic nanostructure," Nano Letters, vol. 6, pp. 827-832, 2006.
[30] M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, "The Quantum-Mechanics of Larger Semiconductor Clusters (Quantum Dots)," Annual Review of Physical Chemistry, vol. 41, pp. 477-496, 1990.
[31] Y. Wang and N. Herron, "Nanometer-Sized Semiconductor Clusters - Materials Synthesis, Quantum Size Effects, and Photophysical Properties," Journal of Physical Chemistry, vol. 95, pp. 525-532, 1991.
[32] K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annual Review of Physical Chemistry, vol. 58, pp. 267-297, 2007.
[33] L. S. Jeremy M. Berg et al. John L. Tymoczko, Biochemistry, sixth ed: W. H. Freeman and Company, 2006.

[34] K. C. Grabar, P. C. Smith, and M. J. Natan, "Kinetics and Thermodynamics of Gold Colloid Self-Assembly on Immobilized Polymers," Abstracts of Papers of the American Chemical Society, vol. 209, pp. 39-Coll, 1995.
[35] K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, "Preparation and Characterization of Au Colloid Monolayers," Analytical Chemistry, vol. 67, pp. 735-743, 1995.
[36] K. C. Grabar, J. E. Deutsch, and M. J. Natan, "Polymer-Supported Gold Colloid Monolayers - a New Approach to Biocompatible Metal-Surfaces," Abstracts of Papers of the American Chemical Society, vol. 209, pp. 27-Poly, 1995.
[37] S. H. Park, J. H. Im, J. W. Im, B. H. Chun, and J. H. Kim, "Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces," Microchemical Journal, vol. 63, pp. 71-91, 1999.
[38] I. J. Chen and E. Lindner, "The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces," Langmuir, vol. 23, pp. 3118-3122, 2007.
[39] 蘇芷琳, "開發適合生物小分子分析之雷射脫附游離質譜法," 國立中山大學 化學研究所, 碩士, 2007.
[40] P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir, vol. 12, pp. 788-800, 1996.
[41] Z. Y. Tang, Y. Wang, and N. A. Kotov, "Semiconductor nanoparticles on solid substrates: Film structure, intermolecular interactions, and polyelectrolyte effects," Langmuir, vol. 18, pp. 7035-7040, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.216.32.116
論文開放下載的時間是 校外不公開

Your IP address is 18.216.32.116
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code