Responsive image
博碩士論文 etd-0901108-201631 詳細資訊
Title page for etd-0901108-201631
論文名稱
Title
以電漿輔助分子束磊晶於矽(111)基板形成氮化銦奈米柱之成長與分析
Growth and Characterization of InN Nanorods Grown on Si(111) Substrate by Plasma-assisted Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-25
繳交日期
Date of Submission
2008-09-01
關鍵字
Keywords
氮化銦、奈米柱
InN, nanorod
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
在這篇論文裡,我們將討論怎樣成長氮化銦奈米柱。我們已經嘗試不同的參數,透過電漿輔助分子束磊晶在矽(111)基板上成長氮化銦奈米柱。成長過程中,成長溫度和V/III比是最重要的因素。改變這兩個因素,我們能夠長出不同形式的氮化銦。
形成氮化銦奈米柱的另一個因素是氮化鋁緩衝層。沒有氮化鋁緩衝層,成長出的氮化銦奈米柱可以非常容易的從基板上除去。有氮化鋁緩衝層,在氮化銦奈米柱和矽基板之間的界面似乎會更牢固。
在長時間的成長之後,氮化銦奈米柱的底部會結合在一起。因此,這個樣品的形貌就好像氮化銦奈米柱在氮化銦薄膜上成長。
從XRD測量中,我們能知道氮化銦奈米柱沿著c軸成長。而沒有銦金屬的信號表示,氮化銦奈米柱是在氮充裕的狀態下成長。
我們發現PL光譜的峰值位置是大約0.66 eV,並且當溫度改變時,峰值沒有任何變化。
在單根的氮化銦奈米柱上,不同直徑量測區域的CL光譜,我們得到幾乎相同的結果,峰值位置大約都是在0.63 eV。我們計算能使氮化銦有量子效應的尺寸大約是17奈米。也許這就是原因之一,峰值並未隨著直徑改變而改變。
拉曼光譜中,氮化銦奈米柱的E2(high)峰值是488.23 cm-1,這比氮化銦薄膜更接近於unstrained氮化銦(488.00 cm-1)。
Abstract
In this thesis, we will discuss how to grow InN nanorods. We have tried different parameters to grow InN nanorods on silicon (111) substrate by plasma assisted molecular beam epitaxy (PAMBE). The growth temperature and V/III ratio are the most important factors in growth. By changing these two factors, we can grow InN into different forms.
Another factor of forming InN nanorod is AlN buffer layer. Growing without AlN buffer layer, InN nanorods can be removed from substrate very easily. Growing with AlN buffer layer, the interface between InN nanorods and silicon substrate seems stronger.
After a long time growth, the bottoms of InN nonarods combine together. Therefore, the morphology of this sample seems like InN nanorods grown on InN film.
From XRD measurement, we can know the InN nanorod is growing alone the c-axis. Without the signal of In metal shows InN nanorod were grown under the N-rich condition.
We found that the peak position of PL spectra is about 0.66 eV. And did not have any shift while the temperature changing.
Measuring CL spectra of areas with different diameters of single InN nanorod, we got almost the same result. The peak positions are around 0.63 eV. We calculate the quantum size of InN for having quantum effect is about 17 nm. Maybe it is one of the reasons of peak positions did not get shift while diameter changing.
In Raman spectra, the E2(high) peak of InN nanorod is 488.23 cm-1, it is closer to the unstrained InN (488 cm-1) than InN film.
目次 Table of Contents
Chapter 1: Introduction 01
Chapter 2: Epitaxial growth and measurement system
2.1 Plasma assisted molecular beam epitaxy (PA-MBE) 05
2.2 Scanning electron microscopy (SEM) 11
2.3 Luminescence 13
2.3.1 Photoluminescence 14
2.3.2 Cathodoluminescence 14
2.4 X-ray diffraction (XRD) 15
2.5 Raman scattering 16
2.6 Energy dispersive spectroscopy (EDS) 17
Chapter 3: InN nanorod growth
3.1 Substrate preparation 18
3.2 InN nanorod growth 20
3.3 The effect of different N/In rations on InN nanorod growth with substrate nitridation 21
3.4 The effect of different growth temperatures on InN
nanorod with substrate nitridation 25
3.5 The effect of different N/In ratios on InN nanorod with AlN buffer layer 28
Chapter 4: Measurement and discussion
4.1 XRD measurement 38
4.2 Raman measurement 40
4.3 PL measurement 42
4.4 CL measurement 44
Conclusion 51
Reference 52
Appendix
Appendix I. Cryo pump regeneration 54
參考文獻 References
Chapter 1
[1.1] J. Grandal, M.A. Sanchez-Garcia, Journal of Crystal Growth 278 373–377 (2005)
[1.2] Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamoto J. Appl. Phys. 94, 2779 (2003)
[1.3] A. P. Alivisatos, Science, New Series, Vol. 271, No. 5251. pp. 933-937 (Feb. 16, 1996)

Chapter 2
[2.1]Materials Analysis by 汪建民 (1998)

Chapter 3
[3.1]Epitaxial Growth and Fundamental Properties of III-nitride Low-dimensional Nanomaterials, PhD thesis by Dr. Chang-Hong Shen in National Tsing Hua University.
[3.2] J. Grandal, M.A. Sanchez-Garcia, Journal of Crystal Growth 278 373–377 (2005)
[3.3] E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F. B. Naranjo, E. Munoz, S. I. Molina, A. M. Sanchez, F. J. Pacheco and R. Garcia, Journal of Crystal Growth Volumes 201-202, pages 296-317 (May 1999)

Chapter 4
[4.1] Optical Properties of Solids, chapter 4, by Mark Fox (2001)
[4.2] Y.-M. Changa, APL 90, 072111 (2007)
[4.3] B. Arnaudov, Superlattices and Microstructures, Volume 36, Issues 4-6, pages 563-571, (October-December 2004)
[4.4] C. Persson, Journal of Crystal Growth, Volume 305, Issue 2, Pages 408-413 (July 2007)
[4.5]Nitride Semiconductors Handbook on Materials and Devices by Pierre Ruterana, Martin Albrecht, Jorg Neugebauer, Page 263 (2003)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.170.17
論文開放下載的時間是 校外不公開

Your IP address is 18.189.170.17
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code