Responsive image
博碩士論文 etd-0901109-025816 詳細資訊
Title page for etd-0901109-025816
論文名稱
Title
以化學氣相沉積法於鋁酸鋰基板成長LiAl5O8奈米柱
Growth of LiAl5O8 nanowire on LiAlO2 substrate by chemical vapor decomposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-29
繳交日期
Date of Submission
2009-09-01
關鍵字
Keywords
化學氣相沉積、鋁酸鋰
LiAl5O8, VLS
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
本實驗將以化學氣相沉積法利用Vapor-Liquid-Solid機制(VLS)於LiAlO2基板得到LiAl5O8奈米級螢光粉體:以碳與氧化鋅混合之粉體於高溫下進行碳熱還原反應(Carbothermal reduction),在此反應下產生的一氧化碳將把LiAlO2基板分解,所分解的產物被基板上之金點吸附而成長出LiAl5O8奈米柱。
在本實驗中將利用金點大小、載送氣流改變以及反應溫度的不同來比較對LiAl5O8奈米柱成長的影響:在金點越大的情況下所成長的奈米柱直徑也會隨之變粗,載送氣流的增加將使的奈米柱的長度增加,而反應溫度的增加也將使奈米柱長度增加,然而反應溫度在超過946oC後奈米柱反而較短。在此實驗中將利用穿透式電子顯微鏡以及X-ray繞射分析儀來判斷奈米柱成長方向,並研判LiAl5O8奈米柱是延著(111)方向來成長。
Abstract
none
目次 Table of Contents
目錄
第一章 緒論 1
1-1 引言 1
1-2 LiAl5O8的應用 2
1-3 奈米級螢光粉的研究 5
1-4 研究動機 5
第二章 理論基礎 6
2-1 Vapor-Liquid-Solid(VLS)成長機制 6
2-2文獻回顧 11
第三章 樣品成長 16
3.1 實驗介紹 16
3.2 實驗準備步驟 17
3.3 實驗製程參數 19
3.4 量測系統介紹 22
3.4.1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, TF-SEM) 22
3.4.2 X光繞射分析儀 (X-ray diffraction, XRD) 22
3.4.3 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 22
第四章 實驗結果與討論 23
4-1 改變鍍金時間對LiAl5O8成長之影響 23
4-2改變氣體流量對LiAl5O8成長之影響 25
4-3 改變溫度對LiAl5O8成長之影響 25
4-4 LiAl5O8奈米柱TEM分析 32
4-5 X-ray繞射結果分析 38
第五章 結論 43
參考文獻 45
參考文獻 References
參考文獻
[1] K. E. Sickafus, J. M. Wills, J. Am. Ceram. Soc., 82 (1999) 3279.
[2] V. Singh, R.P.S. Chakradhar, J.L. Rao, Ho-Young Kwak, Solid State Science, 11 (4) (2009) 870.
[3] V. Singh, R.P.S. Chakradhar, J.L. Rao, D.-K. Kim, Mat. Chem. Phys., 110 (1) (2008) 43.
[4] N.T. Meland, F. des Barros, P.J. Viccaro, J.O. Artman, Phys. Rev. B Solid State, 5 (9) (1972) 3377.
[5] T. Ishihara, T. Katsuhisa, H. Kazuyuki, S. Naohiro, in: J.D. Mackenzie (Ed.), Proceedings of the SPIE on Sol–Gel Optics III, 2288 (10) (1994) 668.
[6] S.C. Bhargava, J. Phys. C: Solid State Phys., 19 (35) (1986) 7045.
[7] T.R.N. Kutty, M. Nayak, J. Alloys Compounds, 269 (1998) 75.
[8] S. Hashimoto, K. Hattori, K. Inoue, A. Nakahashi, S. Honda, Y. Iwamoto, Mater. Res. Bull., 44 (2009) 70.
[9] D. Pan, D. Yuan, H. Sun, X. Duan, C. Luan, S. Guo, Z. Li, L.Wang, Mater. Chem. Phys., 96 (2006) 317.
[10] L. Zuwu, L. Xi, L. Jun, Nat. Sci. J. Xiangtan. Univ., 18 (3) (1996) 49.
[11] K. Inoue, M. Shoyama, M. Murayama, Y. Torii, J. Mater. Sci., 41 (2006) 1269.
[12] K. Inoue, K. Fukuda, M. Fuji, S. Hashimoto, T. Hayakawa, S. Honda, M. Shoyama, Y. Torii, J. Ceram. Soc. Jpn., 114 (2006) 620.
[13] T.-P. Tang, M.-R. Yang, K.-S. Chen, Ceram. Int. 26 (2000) 341.
[14] S. Okamoto, H. Kobayashi, J. Appl. Phys. 86 (1999) 5594.
[15] R. N. Bhargva, D. Gallagher, T. Welker, J. Lumin., 60-61 (1994) 275.
[16] X. Xu, X. Yu, L. Mao, S.-P. Yang, Z. Peng, mater. lett., 58 (2004) 3665.
[17] E. Nogales, B. Mendez, J. Piqueras, J. A. Garcıa, Nanotech., 20 (2009) 115201.
[18] R. A. L. Winchester, W. Max, M. S. P. Shaffer, Angew. Chem., 48 (2008) 5222
[19] M. Wang, G. T. Fei, X. G. Zhu, B. Wu, M. G. Kong, L. D. Zhang, J. Phys. Chem. C, 113 (2009) 4335.
[20] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
[21] J. W.-S., J. H.-U., J. Cryst. Growth, 285 (2005) 566.
[22] W.F. Li, X.L. Ma, W.S. Zhang, W. Zhang, Y. Li, Z.D. Zhang, Phys. Status. Solidi. A, 203 (2006) 294.
[23] T.J. Kuo, M.H. Huang, J. Phys. Chem. B, 110 (2006) 13717.
[24] J.R. Morber, Y. Ding, M.S. Haluska, Y. Li, P. Liu, Z.L. Wang, J. Phys. Chem. B, 110 (2006) 21672.
[25] V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, J.C. Harmand, Ustinov V.M. Harmand, Phys. Rev. E, 73 (2006) 21603.
[26] M.A. Verheijen, G. Immink, de Smet T, Borgstro‥m M.T., Bakkers
[27] J. Johansson, B.A. Wacaser, K.A. Dick, W. Seifert, Nanotechnology 17 (2006) S355.
[28] K.A. Dick, K. Deppert, L.S. Karlsson, L.R. Wallenberg, L. Samuelson, W. Seifert, Adv. Func. Mater., 15 (2005) 1603.
[29] J.C. Harmand, G. Patriarche, P.-L. N., M.-C. M.-N., L. Travers, F. Glas, Appl. Phys. Lett. 87 (2005) 203101.
[30] A.I. Persson, M.W. Larsson, S. Stenstrom, B.J. Ohlsson, L. Samuelson, L.R. Wallenberg, Nature Mater, 3 (2004) 677.
[31] D. Tham, C.Y. Nam, K. Byon, J. Kim, J.E. Fischer, Appl. Phys. A 85 (2006) 227.
[32] F.D. Wang, A.G. Dong, J.W. Sun, R. Tang, H. Yu, W.E. Buhro, Inorg. Chem., 45 (2006) 7511.
[33] C.B. Jiang, B. Wu, Z.Q. Zhang, L. Lu, S.X. Li, S.X. Mao, Appl. Phys. Lett., 88 (2006) 93103.
[34] B. Wang, Y.H. Yang, G.W. Yang, Nanotechnology, 17 (2006) 4682.
[35] H.J. Fan, P. Werner, M. Zacharias, Small 2 (2006) 700.
[36] W. Lu, C.M. Lieber, J. Phys. D: Appl. Phys. 39 (2006) R387.
[37] J. K.P. De, J.W. Geus, Catal. Rev. 42 (2000) 481.
[38] K.W. Kolasinski, J. Sol. Sta. and Mat. Sci., 10 (2006) 182.
[39] Y. Wu, P.D. Yang, Chem. Mater., 12 (2000) 605.
[40] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, SCIENCE, 292 (2001) 1897.
[41] Y. K. Rao, Stoichiometry and Thermodynamics of Metallurgical Processes, Cambridge University Press, New York (1985)
[42] K.W. Kolasinski, Surface science: foundations of catalysis and nanoscience. Chichester: John Wiley and Sons; 2002.
[43] I. Daruka, A.-L. Barabási, Phys. Rev. Lett., 79 (1997) 3708.
[44] H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science, 300 (2003) 1249.
[45] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett., 81 (2002) 3046.
[46] Z. Zhu, T.L. Chen, Y. Gu, J. Warren, R.M. Osgood, J. Chem. Mater., 17 (2005) 4227.
[47] S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Cryst. Growth, 247 (2003) 357.
[48] P.X. Gao, Y. Ding, Z.L. Wang, Nano. Lett., 3 (2003) 1315.
[49] Y. Ding, P.X. Gao, Z.L. Wang, J. Am. Chem. Soc., 126 (2004) 2066.
[50] C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett., 81 (2002) 3648.
[51] T.Y. Kim, J.Y. Kim, S.H. Lee, H.W. Shim, S.H. Lee, E.K. Suh, K.S. Nahm, Synth. Met., 144 (2004) 61.
[52] S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, H.J. Lee, Chem. Mater., 15 (2003) 3294.
[53] W.D.Yu, X.M. Li, X.D. Gao, Cryst. Growth Des., 5 (2005) 151.
[54] C.C. Tang, S.S. Fan, M.L. Chapelle, P. Li, Chem. Phys. Lett., 333 (2001) 12.
[55] K. Yu, Y. Zhang, L. Luo, S. Ouyang, H. Geng, Z. Zhu, Mater. Lett., 59 (2005) 3525.
[56] Y.H. Yang, G.W. Yang, Crys. Grow. and Des., 7 (2007) 1242.
[57] P.D. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater., 12 (2002) 323.
[58] T. Kuykendall, P.J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P.D. Yang, nat. mater., 3 (2004) 524. E.P.A.M., J Am Chem Soc 128 (2006) 1353.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.212.145
論文開放下載的時間是 校外不公開

Your IP address is 3.144.212.145
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code