Responsive image
博碩士論文 etd-0901109-170544 詳細資訊
Title page for etd-0901109-170544
論文名稱
Title
橫向錐形內縮式主動波導光模轉換器與高速電致光吸收調變器之整合
Monolithic Integration of Optical Spot-Size Converter and High-Speed Electroabsorption Modulator using Laterally Tapered Undercut Waveguide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-15
繳交日期
Date of Submission
2009-09-01
關鍵字
Keywords
電致光吸收調變器、光模轉換器
Electroabsorption Modulator, Spot-Size Converter
統計
Statistics
本論文已被瀏覽 5662 次,被下載 0
The thesis/dissertation has been browsed 5662 times, has been downloaded 0 times.
中文摘要
在本篇論文中,我們提出一新穎的結構來製作光模轉換器與高速電致光吸收調變器之積體化元件。此光模轉換器的設計原理主要是靠光在非對稱性光波導(高折射率、小尺寸的主動波導與低折射率、大尺寸的被動波導)間的耦合效應,當主動波導的寬度逐漸變細時,主動波導光模態的有效折射率變低,因此可與被動波導光模態的有效折射率達到匹配,光便能有效率地從一波導耦合至另一波導中來完成光模場的轉換,而逐漸變細的錐型主動光波導,在此我們利用一種選擇性內縮蝕刻主動層的製程方式來製作一所謂的橫向錐形內縮式主動光波導,由於此橫向錐形內縮式主動光波導可經由一較大的錐形脊狀波導透過即時監控內縮蝕刻的深度來形成,因此可以避免掉因製作錐形光波導所需之次微米曝光顯影所產生的困難度,而且此結構也不會牽涉到其他複雜的製程,如選擇區域長晶、選擇區域蝕刻與製程後長晶等技術。經由積體整合電致光吸收調變器與光模轉換器,電致光吸收調變器的本質層寬度可以進一步縮小以提高電致光吸收調變器的操作頻寬,然而透過光模轉換器,元件與單模光纖間的耦合損耗並不會因本質層寬度縮小而增加。
  而於完成元件的特性上,光模轉換器與單模光纖間的1-dB對準誤差可達±2.9微米(水平方向)與±2.2微米(垂直方向),而電致光吸收調變器與單模光纖間的-1 dB對準誤差僅±1.9微米(水平方向)與±1.6微米(垂直方向);光模轉換器的遠場發散角為6.0 (水平方向)與9.3 (垂直方向),電致光吸收調變器的遠場發散角則為11 (水平方向)與20 (垂直方向);光模轉換器的轉換損耗可低到-1.6 dB。而所有量測的結果與理論計算的結果相當吻合,充份驗證此橫向錐形內縮式主動光波導可用來完成光模轉換器的製作。元件電致光吸收調變器部分的波導寬度為2.5微米,造就元件的-3-dB頻寬可達40 GHz。在此研究中,我們成功地開發以橫向錐形內縮式主動光波導製程技術,完成製作高效率光模轉換器與高速電致光吸收調變器積體化元件,說明此技術在高速光電元件製作領域上,具有相當大的應用發展潛力。
Abstract
This thesis proposes a novel structure to realize the monolithic integra-tion of optical spot-size converter (SSC) and high-speed electroabsorption modulator (EAM). The SSC is based on a scheme of coupled asymmetric waveguide fabricated by tapered undercut waveguide. Using a selectively undercut-etching-active-region (UEAR), the laterally tapered undercut ac-tive waveguide (LTUAWG) can be processed from a wide tapered ridge waveguide using in situ control to avoid submicron photolithography as well as complex processing, such as selective area growth, selective area etching and re-growth. By monolithically integrating EAM and SSC, the EAM waveguide width can be beneficial from scaling down the waveguide size for enhancing the EAM bandwidth, while the optical coupling loss from single mode fiber can still be kept low.
In this finished SSC-integrated EAM, a 1-dB misalignment tolerance of ±2.9μm (horizontal) and ±2.2 μm (vertical) is obtained from SSC side, which is better than the results, ±1.9μm (horizontal) and ±1.6μm (vertical), from EAM side. The measured far-field angles for SSC and EAM are 6.0 (horizontal) ∗ 9.3 (vertical) and 11 (horizontal) ∗ 20 (vertical) respectively. As low as mode transfer loss of -1.6 dB is obtained in such SSC. All the simulation results are quite fitted with the experiment results, realizing the function of SSC by LTUAWG. The fabricated EAM waveguide width is 2.5 μm, leading to over 40 GHz of -3-dB electrical-to-optical (EO) response. The high efficient SSC integrated with high-speed EAM suggests that the LTUAWG technique can have potential for applications in high-speed optoelectronic fields.
目次 Table of Contents
1. Introduction 1
1.1 SPOT-SIZE CONVERTERS FOR III-V OPTOELECTRONIC DEVICES 1
1.2 PROPOSED SSC STRUCTURE 5
1.3 BENEFITS FROM INTEGRATION OF EAM 7
1.4 THESIS OUTLINE 9
Reference 10

2. Spot-Size Converter Design 15
2.1 WAVEGUIDE DESIGN 17
2.1.1 Active Waveguide 17
2.1.2 Passive Waveguide 19
2.1.3 Mode Transfer Efficiency 22
2.2 VERTICAL WAVEGUIDE DIRECTIONAL COUPLER
WITH LATERALLY TAPERED UNDERCUT ACTIVE
WAVEGUIDE 25
2.3 PASSIVE WAVEGUIDE DESIGN TO MAKE TRANSFER EFFICIENCY INSENSITIVE TO AWG VARIATIONS 28
2.4 SUMMARY 31
Reference 31

3. Material Characteristics for Optical Waveguide 32
3.1 QUANTUM CONFINED STARK EFFECT 32
3.1.1 Material Bandgaps 33
3.1.2 Quantum Well Band Structure 37
3.1.3 Quantum Confined Stark Effect 40
3.2 OPTICAL ABSORPTION IN QUANTUM WELL 44
3.2.1 Stimulated Absorption Rate 45
3.2.2 Absorption Coefficients without Exciton Effect 50
3.2.3 Absorption Coefficients with Exciton Effect 51
3.3 POLARIZATION SENSITIVITY OF QUANTUM WELL 55
3.4 MATERIAL REFRACTIVE INDEX 60
3.5 SUMMARY 62
Reference 63


4. High-Speed Characteristics of Electroabsorption Modulator 67
4.1 EQUIVALENT CIRCUIT MODEL FOR
TRAVELING-WAVE ELECTROABSORPTION MODULATOR 68
4.2 FREQUENCY RESPONSE 77
4.2.1 Electrical-to-Electrical Response 77
4.2.2 Electrical-to-Optical Response 81
4.3 CASCADED TRANSMISSION LINE DESIGN FOR HIGH-SPEED OPERATION 87
4.4 SUMMARY 89
Reference 90

5. Fabrication and Measurements 91
5.1 LAYER STRUCTURE 91
5.2 DEVICE FABRICATION (SSC) 92
5.3 DEVICE MEASUREMENTS (SSC) 96
5.4 DISCUSSION AND SUMMARY (SSC) 103
5.5 DEVICE FABRICATION AND MEASUREMENTS (CI) 109
5.6 DISCUSSION AND SUMMARY (CI) 115

6. Summary and Future Work 117
6.1 SUMMARY 117
6.2 FUTURE WORK 119
6.2.1 SSC 119
6.2.2 CI 122
6.3 OUTLOOK 123
6.4 Reference 124

A Coupled Mode Theory 125
B Variational Method for Exciton Problem 130
C Coplanar Waveguide (CPW) Circuit 134
D Microwave Transmission Matrix Calculation 139
參考文獻 References
Chapter1:
[1] N. Kalonji, and J. Semo, “High efficiency, long working distance laser diode to singlemode fiber coupling arrangement,” Electron. Lett., vol. 30, no. 11, pp. 892-894, 1994.
[2] Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng , "Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes" Opt. Express, vol. 15, no. 6, pp. 1434-1442, 2007.
[3] V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE. J. Sel. Top. Quantum Electron., vol. 3, no. 6, pp. 1332-1343, 1997.
[4] I. Moerman, P. Van Daele, P. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 6, pp. 1308-1320, 1997.
[5] B. Mersali, A. Ramdane, and A. Carenco, “Optical-mode transformer: a III-V circuit integration enabler,” IEEE. J. Sel. Top. Quantum Electron., vol. 3, no. 6, pp. 1321-1331, 1997.
[6] I. Moerman, M. D’Hondt, W. Vanderbauwhede, P. Van Daele, P. Demeester, and W. Hunziker, “InGaAsP/InP strained MQW laser with integrated mode size converter using the shadow masked grown technique,” Electron. Lett., vol. 31, no. 6, pp. 452-454, 1995.
[7] H. Kobayashi, T. Yamamoto, M. Ekawa, T. Watanabe, T. Ishikawa, T. Fujii, H. Soda, S. Ogita, and M. Kobayashi, “Narrow-beam divergencde 1.3-μm multiple-quantum-well laser diodes with monolithically integrated tapered thickness waveguide,” IEEE J. Select. Topics Quantum Electron., Vol. 3, no. 6, pp. 1384-1391, 1997.
[8] N. Yoshimoto, K. Mageri, T. Ito, Y. Kawaguchi, K. Kishi, Y. Kondo, Y. Kadota, O. Mitomi, Y. Yoshikuni, Y. Hasumi, Y. Tohmori, and O. Nakajima, “Spot-size converted polarization-insensitive SOA gate with a vertical tapered submicrometer stripe structure,” IEEE Photon. Technol. Lett., vol. 10, no. 4, pp. 510-512, 1998.
[9] Donghoon Jang, Jongin Shim, Jungkee Lee, and Yungseon Eo, “Asymmetric output characteristics in 1.3-μm spot-size converted laser diodes,” IEEE. J. Quantum Electron., vol. 37, no. 12, pp. 1611-1617, 2001.
[10] A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, and R. J. Reri, “Dynamic etch mask technique for fabricating tapered semiconductor optical waveguides and other structures,” Appl. Phys. Lett., vol. 56, no. 12, pp. 1098-1100, 1990.
[11] P. Albrecht, H. Heidrich, R. Löffler, L. Mörl, F. Reier, and C. M. Weinert, “Integration of polarization independent mode transformers with uncladded InGaAsP/InP rib waveguides,” Electron. Lett., vol. 32, no. 13, pp. 1196-1198, 1996.
[12] T. Brenner, W. Hunziker, M, Smit, M. Bachmann, G. Guekos, and J. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett., vol. 28, no. 22, pp. 2040-2041, 1992.
[13] B. Jacobs, R. Zengerle, K. Faltin, and W, Weiershausen, “Vertically, tapered spot size transformers fabricated by simple masking technique,” Electron. Lett., vol. 31, no. 10, pp. 794-796, 1995.
[14] H. Fukano, Y. Kodota, Y Kondo, M. Ueki, Y Sakai, K. Kasaya, K. Yokoyama, and Y. Yohmori, “1.3 μm large spot-size laser diodes with laterally tapered active layer,” Electron. Lett., vol. 31, no. 17, pp. 1439-1440, 1995.
[15] K. Kasaya, Y. Konndo, M. Okamoto, O. Mitomi, and M. Naganuma, “Monolithically integrated DBR lasers with simple tapered waveguide for low-loss fiber coupling,” Electron. Lett., vol. 29, no. 23, pp. 2067-2068, 1993.
[16] Th. Schwander, S. Fischer, A. Krämer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett., vol. 29, no. 4, pp. 326-328, 1993.
[17] N. Yoshimoto, K. Kawano, Y. Hasumi, H. Takeuchi, S. Kondo, and Y. Noguchi, “InGaAlAs/InAlAs multiple quantum well phase modulator integrated with spot size conversion structure,” IEEE Photon. Technol. Lett., vol. 6, no. 2, pp. 208-210, 1994.
[18] B. Mersali, H. J. Brückner, M. Feulillade, S. Sainson, A. Ougazzaden, and A. Carenco, “Theoretical and experimental studies of a spot-size transformer with integrated waveguide for polarization insensitive optical amplifiers,” J. Lightwave Technol., vol. 13, no. 9, pp. 1865-1872, 1995.
[19] B. Hübner, G. Vollrath, R. Ries, C. Gréus, H. Janning, E. Rönneberg, E. Kuphal, B. Kempf, R. Göbel, F. Fiedler, R. Zengerle, and H. Burkhard, “Laser diodes with integrated spot-size transformer as low-cost optical transmitter elements for telecommunications,” IEEE. J. Sel. Top. Quantum Electron., vol. 3, no. 6, pp. 1372-1383, 1997.
[20] H. Bissessur, C. Graver, O. Le Gouezigou, G. Michaud, and F. Gaborit, “Ridge laser with spot-size converter in a single epitaxial step for high coupling efficiency to single-mode fibers,” IEEE Photon. Technol. Lett., vol. 10, no. 9, pp. 1235-1237, 1998.
[21] P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, “Efficient coupling in integrated twin-waveguide lasers using waveguide tapers,” IEEE, Photon. Technol. Lett., vol. 11, no. 9, pp. 1096-1098, 1999.
[22] Y. J. Chiu, T. H. Wu, W. C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2065-2067, 2005.
[23] H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, “Very-low-driving-voltage electroabsorption modulators operating at 40 Gb/s,” J. Lightwave Technol., vol. 24, no. 5, pp. 2219-2224, 2006.
[24] F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. C. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAlAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol., vol. 10, no. 7, pp. 887-901, 1995.
[25] T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano, and H. Inoue, “Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides,” J. Lightwave Technol., vol. 14, no. 9, pp. 2026-2034, 1996.
[26] S. Irmscher, R. Lewen, and U. Eriksson, “InP-InGaAsP high-speed traveling-wave electroabsorption modulators with integrated termination resistors,” IEEE Photon. Technol. Lett., vol. 14, no. 7, pp. 923-925, 2002.
[27] G. L. Li, S. A. Pappert. P. Mages, C. K. Sun, W. S. C. Chang, and P. K. L. Yu, “High-saturation high-speed traveling-wave InGaAsP-InP electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 13, no. 10, pp. 1076-1078, 2001.
[28] Y. J. Chiu, H. F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 14, no. 6, pp. 792-794, 2002.
[29] J. E. Johnson, L. J. P. Ketelsen, J. A. Grenko, S. K. Sputz, J. Vandenberg, M. W. Focht, D. V. Stampone, L. J. Peticolas, L. E. Smith, K. G. Glogovsky, G. J. Przybylek, S. N. G. Chu, J. L. Lentz, N. N. Tzafaras, L. C. Luther, T. L. pernell, F. S. Walters, D. M. Romero, J. M. Freund, C. L. Reynolds, L. A. Gruezke, R. People, and M. A. Alam, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input,” IEEE J. Select. Select. Topics Quantum Electron., vol. 6, no. 1, pp. 19-25, 2000.
[30] K. Asaka, Suzuki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 679-681, 2003.
[31] B. Mason, A. Ougazzaden, C. W. Lentz, K. G. Glogovsky, C. L. Reynolds, G. J. Przybylek, R. E. Leibenquth, T. L. Kercher, J. W. Boardman, M. T. Rader, J. M. Geary, F. S. Walters, L. J. Peticolas, J. M. Freund, S. N. G. Chu, A. Sirenko, R. J. Jurchenko, M. S. Hybertsen, L. J. P. Ketelsen, G. Raybon, “40-Gb/s tandem electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 27-29, 2002.
[32] T. Y. Chang, “Design optimization of low-impedance high-speed optical modulators for digital performance,” J. Lightwave Technol., vol. 23, no. 12, pp. 4321-4331, 2005.
[33] S. Irmscher, R. Lewén, and U. Eriksson, “InP-InGaAsP high-speed traveling-wave electroabsorption modulators with integrated termination resistors,” IEEE Photon. Technol. Lett., vol. 14, no. 7, pp. 923-925, 2002.

Chapter2:
[1] V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE. J. Sel. Top. Quantum Electron., vol. 3, no. 6, pp. 1332-1343, 1997.
[2] H. Bissessur, C. Graver, O. Le Gouezigou, G. Michaud, and F. Gaborit, “Ridge laser with spot-size converter in a single epitaxial step for high coupling efficiency to single-mode fibers,” IEEE Photon. Technol. Lett., vol. 10, no. 9, pp. 1235-1237, 1998.
[3] P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, “Efficient coupling in integrated twin-waveguide lasers using waveguide tapers,” IEEE, Photon. Technol. Lett., vol. 11, no. 9, pp. 1096-1098, 1999.

Chapter3:
[1] W. Franz, Z. Naturforsch., vol. 13, pp. 484, 1958.
[2] L. V. Keldysh, Sov. Phys., vol. JETP7, pp. 788, 1953.
[3] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B, Condens. Matter, vol. 32, no. 2, pp. 1043-1060, 1985.
[4] D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: the quantum-confined Franz-Keldysh effect,” Phys. Rev. B, Condens. Matter, vol. 33, no. 10, pp. 6976-6982, 1986.
[5] S. L. Chuang, Physics of optoelectronic devices. New York: Wiley, 1995.
[6] G. Bastard, E. E. Mendes, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B, Condens. Matter, vol. 28, no. 6, pp. 3241-3245, 1983.
[7] S. Nojima, Y. Kawaguchi, K. Nakashima, and K. Wakita, “Field-induced energy shift of excitonic absorption in InGaAs/InP multiquantum wells grown by metalorganic molecular beam epitaxy,” Jpn. J. Appl. Phys. 2, Lett., vol. 26, no. 11, pp. 1927-1928, 1987.
[8] S. Nojima, Y. Kawaguchi, K. Nakashima, and O. Mikami, “Electric field effects in excitonic absorption for high-quality InGaAs/InAlAs multiple-quantum-well structures,” J. Appl. Phys., vol. 64, no. 5, pp. 2795-2797, 1988.
[9] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron., vol. 35, no. 5, pp. 771-782, 1999.
[10] L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits. New York: Wiley, 1995.
[11] W. A. Harrison, “Elementary theory of heterojunctions,” J. Voc. Sci. Technol., vol. 14, no. 4, pp. 1016-1021, 1977.
[12] T. H. Wood, T. Y. Chang, J. Z. Pastalan, C. A. J. Burrus, N. J. Sauer, and B. C. Johnson, “Increased optical saturation intensities in GaInAs multiple quantum wells by the use of AlGaInAs barriers,” Electron. Lett., vol. 27, no. 3, pp. 257-259, 1991.
[13] T. Ido, H. Sano, S. Tanaka, D. J. Moss, and H. Inoue, “Performance of strained InGaAs/InAlAs multiple-quantum-well electroabsorption modulators,” J. Lightwave Technol., vol. 14, no. 10, pp. 2324-2331, 1996.
[14] T. H. Wood, J. Z. Pastalan, C. A. Burrus, Jr., B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: A new mechanism for absorption saturation,” Appl. Phys. Lett., Vol. 57, no. 11, pp. 1081-1083, 1990.
[15] M. Suzuki, H. Tanaka, and S. Akiba, “Effect of hole pile-up at heterointerface on modulation voltage in GaInAsP electroabsorption modulators,” Electron. Lett., vol. 25, no. 2, pp. 88-89, 1989.
[16] H. Kroemer, Quantum Mechanics: For Engineering, Material Science, and Applied Physics, Prentice Hall, 1994. (chapter 5)
[17] M. K. Chin, P. K. L. Yu, and W. S. C. Chang, “Optimization of multiple quantum well structures for waveguide electroabsorption modulators,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 696-701, 1991.
[18] R. J. Elliot, “Intensity of optical absorption by excitons,” Phys. Rev., vol. 108, no. 6, pp. 1384-1389, 1957.
[19] J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: The excitonic absorption edge” Phys. Rev. B, vol. 1, no. 8, pp. 3358-3371, 1970.
[20] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173-2176, 1984.
[21] P. J. Mares and S. L. Chuang, “Modeling of self-electrooptic-effect devices,” J. Appl. Phys., vol. 74, no. 2, pp. 1388-1397, 1993.
[22] S. Z. Zhang, Y. J. Chiu, P. Abraham, and J. E. Bowers, “25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Tech. Lett., vol. 11, no. 2, pp. 191-193, 1999.
[23] S. Adachi, “Optical properties of In1-xGaxAsyP1-y alloys,” Phys. Rev. B, vol. 39, no. 17, pp. 12612-12621, 1989.
[24] D. W. Jenkins, “Optical constants of AlxGa1-xAs,” J. Appl. Phys., vol. 68, no. 4, pp. 1848-1853, 1990.
[25] C. H. Lin and J. M. Meese, “Optical properties of bulk AlxGa1-xAs,” J. Appl. Phys., vol. 74, no. 10, pp. 6341-6348, 1993.
[26] M. Guden and J. Piprek, “Material parameters of quaternary III-V semiconductors for multilayer mirrors at 1.55 μm wavelength,” Modelling Simul. Mater. Sci. Eng., vol. 4, pp. 349-357, 1996.
[27] G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, “Refractive index approximations from linear perturbation theory for planar MQW waveguides,” IEEE J. Quantum Electron., vol. 28, no. 3, pp. 650-657, 1992.

Chapter4:
[1] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetectors,” IEEE Photon. Technol. Lett., vol. 4, no. 12, pp. 1363-1365, 1992.
[2] Y. J. Chiu, V. Kaman, S. Z. Zhang, and J. E. Bowers, “Distributed effects model for cascaded traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 791-793, 2001.
[3] S. Z. Zhang, “Traveling-wave electroabsorption modulators,” University of California, Santa Barbara, CA, Ph.D. Dissertation, 1999.
[4] D. M. Pozar, Microwave engineering, 3rd Ed., New York: Wiley, 2004.
[5] G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator–design and analysis,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1177-1183, 1999.
[6] T. Y. Chang, “Design optimization of low-impedance high-speed optical modulators for digital performance,” J. Lightwave Technol. Vol. 23, no. 12, pp. 4321-4331, 2005.
[7] R. Lewén, S. Irmscher, U. Westergren, L. Thylén, and U. Eriksson, “Segmented transmission-line electroabsorption modulator,” J. Lightwave Technol., vol. 22, no. 1, pp. 172-179, 2004.
[8] R. K. Hoffmann, Handbook of Microwave Integrated Circuits. Boston: Artech House, Inc., 1987.


Chapter5:
N/A

Chapter6:
[1] M. K. Chin and C. W. Lee, “Polarization-independent vertical coupler for photonics integration,” Opt. Express, vol. 12, no. 1, pp. 117-123, 2004.
[2] L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol., vol. 20, no. 9, pp. 912-916, 2005.
[3] D. Delprat, A. Ramdance, L. Silvestre, A. Ougazzaden, F. Delorme, and S. Slempes, “20 Gb/s integrated DBR laser-EA modulator by selective area growth for 1.55 mm WDM applications,” IEEE Photon. Technol. Lett., vol. 9, pp. 898-900, 1997.
[4] P. I. Kuindersma, P. P. G. Moles, G. L. A. V. D. Hosfad, G. Guypers, M. Temesen, T. V. Dongen, and J. J. M. Binsma, “Packged, integrated DFB/EA-MOD for repeaterless transmission of 10 Gbit/s over 107 km standard fibre,” Electron. Lett., vol. 29, pp. 1876-1878, 1993.
[5] A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. D. L. Rue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE. J. Quantum Electron., vol. 33, no. 1, pp. 45-55, 1997.
[6] V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Select. Topics Quantum Electron., Vol. 8, no. 4, pp. 870-879, 2002.

Appendix A:
[1] S. L. Chuang, Physics of optoelectronic devices. New York: Wiley, 1995.

Appendix B:
[1] S. L. Chuang, Physics of optoelectronic devices. New York: Wiley, 1995.
[2] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B, Condens. Matter, vol. 32, no. 2, pp. 1043-1060, 1985.
[3] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173-2176, 1984.
[4] P. J. Mares and S. L. Chuang, “Modeling of self-electrooptic-effect devices,” J. Appl. Phys., vol. 74, no. 2, pp. 1388-1397, 1993.

Appendix C:
[1] G. Ghione and C. Naldi, “Analytical formulas for coplanar lines in hybrid and monolithic MICs,” Electron. Lett., vol. 20, no. 4, pp. 179-181, 1984.
[2] R. K. Hoffmann, Handbook of Microwave Integrated Circuits. Boston: Artech House, Inc., 1987.μ
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.227.251.194
論文開放下載的時間是 校外不公開

Your IP address is 3.227.251.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code