Responsive image
博碩士論文 etd-0901110-011346 詳細資訊
Title page for etd-0901110-011346
論文名稱
Title
醋酸調節單胞藻 (Chlamydomonas reingardtii) 缺氮誘導脂質累積之脂肪酸與三酸甘油酯合成相關基因表現
Acetate Modulation of Fatty Acid and Triacylglycerol Synthesis-related Gene Expression in Chlamydomonas reinhardtii for Nitrogen Starvation Induced Lipid Accumulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-20
繳交日期
Date of Submission
2010-09-01
關鍵字
Keywords
基因表現、缺氮、Nile Red、脂質合成、ACCase、醋酸、C. reinhardtii、DGAT、FAS
Acetate, Nile Red, Lipid accumulation, FAS, DGAT, C. reinhardtii, Nitrogen starvation, Gene expression, ACCase
統計
Statistics
本論文已被瀏覽 5695 次,被下載 0
The thesis/dissertation has been browsed 5695 times, has been downloaded 0 times.
中文摘要
三酸甘油酯(Triacylglycerol, TAG)係由Diacylglycerol acyltransferase(DGAT)將diacylglycerol (DAG)接上一脂肪酸組合而成,而脂肪酸由ACCase (Acetyl-CoA carboxylase)及FAS (Fatty acid synthase)合成。本研究以單胞藻(Chlamydomonas reinhardtii)薄細胞壁(cell-wall less)品系CC400探討合成TAG及脂肪酸相關基因,包含五個DGAT [DGAT1 (JGI 184281)、DGAT2 (JGI 400751)、 DGAT3 (JGI 285889)、DGAT4 (JGI 141301)及DGAT5 (JGI 190539)]與兩個FAS之subunit [三個 β ketoacyl-ACP reductase isoforms ( (JGI 153976)、(JGI 153976)及(JGI 194728)) 與兩個β ketoacyl-ACP synthase (KAS) isofroms ( (JGI 139619)和(JGI 205887)) ]及三個ACCase ( ACCα (NCBI XP_001696945.1)、ACCβ (NCBI XP_001703187.1)與ACC biotin carboxylase (NCBI XP_001702319.1)之mRNA量與缺氮誘導油脂累積之關係。以有機碳源(acetate)添加之有無觀察藻體油脂累積及mRNA量變化,在缺氮下CC400有油脂累積,同時CC400有DGAT3之mRNA量增加,而FAS中則無差異;缺氮之CC400 ACCα、ACCβ 及ACC biotin carboxylase mRNA量皆下降。結果顯示DGAT3為缺氮下油脂累積之必須。以上述結果為依據,以DGAT基因表現為調查缺氮且缺acetate之指標,發現在缺氮誘導之DGAT1、DGAT2及DGAT3 mRNA量在缺氮且缺acetate下會部分被抑制,而當培養基缺acetate 時則使DGAT4 mRNA 量上升。因此,本研究證實在C. reinhardtii 中acetate為缺氮下油脂累積及DGAT3 基因表現(mRNA量) 之必須。
Abstract
Diacylglycerol acyltransferase (DGAT) is a key for the synthesis of triacylglycerol (TAG) from diacylglycerol in the unicellular green alga Chlamydomonas reinhardtii.Acetyl-CoA carboxylase (ACCase) and fatty acid synthase (FAS) are responsible for the synthesis of fatty acids. We found the TAG and fatty acid synthesis related genes in C. reinhardtii, including five DGAT (DGAT1 (JGI 184281), DGAT2 (JGI 400751), DGAT3 (JGI 285889), DGAT4 (JGI 141301), and DGAT5 (JGI 190539)), three β ketoacyl-ACP reductase isoforms ( (JGI 153976), (JGI 153976), and (JGI 194728)) and two β ketoacyl-ACP synthase isofroms ( (JGI 139619) and (JGI 205887)) for FAS, and ACC α (NCBI XP_001696945.1), ACC β (NCBI XP_001703187.1) and ACC biotin carboxylase ( NCBI XP_001702319.1)) for ACCase in C. reinhardtii. This investigation designed the primers of the above genes to determine whether acetate influences their mRNA expression levels in cell-wall less strain CC400 in the nitrogen starvation condition. The results showed that the absence of nitrogen in the medium triggered the lipid accumulation for the strains of CC400 in the condition of 50 μE light. DGAT3 mRNA levels were increased by nitrogen starvation. For the FAS genes, in the strain of CC400 showed no increased mRNA levels upon exposure to nitrogen starvation. The mRNA levels of ACCα, ACC β and ACC biotin carboxylase were more or less decreased by nitrogen starvation in CC400 strains. Thus, the responses of DGAT gene expression to acetate supplement were checked. The absence of acetate from the medium partly inhibited the nitrogen starvation induced increases in lipid and DGAT3 mRNA levels, and the mRNA levels of DGAT1 and DGAT2 in the nitrogen starvation condition. However, DGAT4 mRNA levels were significantly induced by the absence of acetate from the medium. In conclusion, the present study demonstrate that acetate is required for the nitrogen starvation induced DGAT3 gene expression (mRNA levels) and lipid accumulation in C. reinhardtii.
目次 Table of Contents
中文摘要 ...................................................................................................................... ii
英文摘要 ..................................................................................................................... iii
目錄 ................................................................................................................................v
表目錄 ..........................................................................................................................vi
圖目錄 ........................................................................................................................ vii
附錄目錄 ................................................................................................................... viii
縮寫字對照 ...................................................................................................................x
一、前言 .......................................................................................................................1
二、材料方法 ...............................................................................................................9
三、藥品與儀器 .........................................................................................................16
壹、藥品 .................................................................................................................. 16
貳、儀器 .................................................................................................................. 22
参、藥品配方 .......................................................................................................... 23
四、結果 .....................................................................................................................25
五、討論 .....................................................................................................................31
六、參考文獻 .............................................................................................................33
七、表 .........................................................................................................................40
八、圖 .........................................................................................................................42
九、附錄 .....................................................................................................................56
參考文獻 References
Aaronson S (1973) Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica. J Phycol 9: 111–113.
Alberts A W, Strauss A W, Hennessy S and Vagelos P R (1975) Regulation of synthesis of hepatic fatty acid synthetase: binding of fatty acid synthetase antibodies to polysomes. Proc. Natl. Acad. Sci. USA 72: 3956−3960.
Basova M M (2005) Fatty acid composition of lipids in microalgae. Int J Algae 7: 33–57.
Beijerinck M W (1904) Das Assimilationsproduckt der Kohlensaure in den Chromatorphoren der Diatomeen. Rec. Trav. Bot. Neerl. 1:28–40.
Chen W, Zhang C, Song L, Sommerfeld M and Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods 77: 41-47
Chisti Y (2007) Biodiesel from microalgae. Biotechnology Advances 25: 294-306.
Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 26: 126-131.
Cobelas, M A and Lechado J Z (1989) Lipids in microalgae. A review. I. Biochemistry. Grasas y Aceites, 40: 118–145.
Courchesne N M D, Parisien A , Wang B and Lan C Q (2009) Enhancement of lipid production using biochemical, genetic, and
transcription factor engineering approaches.. J. Biotechnol. 141: 31-41.
Endo T and Asada K (1996) Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol 37: 551–555.
Fabregas J, Maseda A, Dominquez A and Otero A (2004) The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World J. Microbiol. Biotechnol. 20:31–35.
Fett J P and Coleman J R (1994) Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH. Plant Physiol 106: 103–108.
Hobbs D H, Lu C and Hills M J (1999) Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBS Lett 452: 145–149.
Hu Q, Zhang C W and Sommerfeld M (2006) Biodiesel from Algae: Lessons Learned Over the Past 60 Years and Future Perspectives. Juneau, Alaska: Annual Meeting of the Phycological Society of America, July 7–12, pp. 40–41 (Abstract).
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M and Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54: 621–639.
Jackowski, S, Cronan J E, Jr, and Rock C 0 (1991) Biochemistry of Lipids, Lipoproteins and Membranes (Vance, D. E., and Vance, J., eds) pp. 43-85, Elsevier Science Publishers, Amsterdam.
Jako C, Kumar A, Wei Y, Zou J, Barton D L, Giblin E M, Covello P S and Taylor D C (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 126: 861–874.
Kennedy E P (1961)Biosynthesis of complex lipids. Fed Proc. Dec;20:934–940.
Kawata M, Nanba M, Matsukawa R, Chihara M and Karube I (1998) Isolation and characterization of a green alga Neochloris sp. for CO2 fixation. Studies in Surface Science and Catalysis 114:637–640.
Khozin-Goldberg I and Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696–701.
Kim, K H, Lopez-Casillas, F, and Bai, D H (1989) FASEB J. 3: 2250-2256.
Kroon J T M, Wei W X, Simon W J and Slabas A R (2006) Identification and functional expression of a type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67: 2541–2549
Li, Y, Horsman M,Wu N, Lan C Q and Dubois-Calero N (2008)
Biofuels frommicroalgae. Biotechnology Programme 24: 815–820.
McLarnon-Riches C J, Rolph C E, Greenway D L A and Robinson P K (1998) Effects of environmental factors and metals on Selenastrum capricornutum lipids. Phytochemistry 49: 1241-1247.
Merzlyak M N, Chivkunova O B, Gorelova O A, Reshetnikova I V, Solovchenko, A E, Khozin-Goldberg, I and Cohen, Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J. Phycol. 43: 833–843.
Moellering, E R, and C Benning. 2010. RNAi Silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell 9:97-106.
Ohlrogge J B and Jaworski J G (1997) Regulation of fatty acid synthesis.Annu Rev Plant Physiol Plant Mol Biol 48: 109–136.
Post-Beittenmiller D, Jaworski J G and Ohlrogge J B (1991) In vivo pools of free and acylated acyl carrier proteins in spinach: evidence for sites of regulation of fatty acid biosynthesis. J Biol Chem 266: 1858–1865.
Post-Beittenmiller D, Roughan G, and Ohlrogge J B (1992) Plant Physiol. 100:923-930.
Page, R A, Okada, S and Harwood J L (1994) Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Biochimica et Biophysica Acta—Lipids and Lipid Metabolism 1210 (3), 369–372.
Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Progress in Lipid Research 41: 182–196.
Rodolfi L, Zitterlli G C, Bassi N, Padovani G, Biondi N, Bonini G and Tredici M R (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102: 100-112.
Roessler, P G (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol. 26: 393–399.
Routaboul J M, Benning C, Bechtold N, Caboche M and Lepiniec L (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37: 831–840.
Sato N, Hagio M, Wada H and Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. In Recent Advances in the Biochemistry of Plant Lipids (Harwood JL, Quinn PJ, eds). London: Portland Press Ltd, pp. 912–914.
Sato N and Murata N (1980) Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in term-adaptation. Biochim Biophys Acta 619: 353–366.
Shifrin, N S and Chisholm S W (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light– dark cycles. J. Phycol. 17: 374–384.
Smith S, Agradi E, Libertini L and Dileepan K N (1976) Specific release of the thioesterase component of the fatty acid synthetase multienzyme complex by limited trypsinization. Proc. Natl. Acad.
Sci. USA 73:1184−1188.
Smith S, Witkowski A and Joshi A K (2003) Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 42: 289−317.
Song D, Fu J, Shi D (2008) Exploitation of oil-bearing microalgae for biodiesel. Chinese Journal of Biotechnology 24 (3): 341–348.
Spolaore P, Joannis-Cassan C, Duran E and Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng; 101:87–96.
Spoehr, H A and Milner, H W (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol. 24: 120–149.
Stoops, J K (1975) Presence of two polypeptide chains comprising fatty acid synthetase. Proc. Natl. Acad. Sci. USA 72: 1940−1944.
Sueoka, N (1960) Proc. Natl. Acad. Sci. USA 46: 83-91.
Takagi M, Karseno and Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells.Journal of Bioscience and Bioengineering 101 (3): 223–226.
Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302: 17–45.
Tonon T, Larson TR and Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 15–24.
Tornabene T G, Holzer G, Lien S and Burris N (1983) Lipid
composition of the nitrogen starved green alga Neochloris oleabundans. Enzyme Microbiol Technol 5: 435–440.
Vom Endt D, Kijne J W and Memelink, J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators Phytochemistry 61 (2): 107–114.
Wang, Z T, N Ullrich, S Joo, S Waffenschmidt, and U Goodenough (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starch-less Chlamydomonas reinhardtii. Eukaryot. Cell 8(12):1856-1868.
Weger H G, Chadderton A R, Lin M, Guy R D and Turpin D H (1990a) Cytochrome and alternative pathway respiration during transient ammonium assimilation by N-limited Chlamydomonas reinhardtii. Plant Physiol 94: 1131–1136.
Weger H G, Guy R D and Turpin D H (1990b) Cytochrome and alternative pathway respiration in green algae. Plant Physiol 93: 356–360.
Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C and Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40: 367–372.
Zou J, Wei Y, Jako C, Kumar A, Selvaraj G and Taylor D C (1999 )The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19: 645–653.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.219.224.103
論文開放下載的時間是 校外不公開

Your IP address is 18.219.224.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code