Responsive image
博碩士論文 etd-0901111-141250 詳細資訊
Title page for etd-0901111-141250
論文名稱
Title
PVDF電紡壓電纖維之指叉電極能量擷取器設計製作
Design and fabrication of PVDF electrospun piezo- energy harvester with interdigital electrode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-29
繳交日期
Date of Submission
2011-09-01
關鍵字
Keywords
能量擷取、撓性基板、多壁奈米碳管、指叉式電極、靜電紡絲、壓電纖維、聚偏氟乙烯
flexible substrate, polyvinylidene fluoride (PVDF), energy harvest, interdigitated electrode, electrospinning, multi-walled carbon nanotube, piezoelectric fiber
統計
Statistics
本論文已被瀏覽 5682 次,被下載 3207
The thesis/dissertation has been browsed 5682 times, has been downloaded 3207 times.
中文摘要
本研究利用靜電紡絲製程技術,製作出聚偏氟乙烯(Polyvinylidene fluoride,PVDF)壓電微奈米纖維,結合指叉式電極的設計進行環境能量的擷取。利用d33機-電能轉換模式,有效地採擷環境中低頻微小的振動及衝擊能量並轉換成足夠電能加以利用。首先將PVDF粉末均勻散佈於丙酮溶液中,混合二甲基亞風(Dimethyl sulfoxide,DMSO)與多壁奈米碳管(Multi-walled carbon nanotube,MWCNT),調配成PVDF高分子溶液。將混合溶液裝填於一通上數百伏電壓的不?袗?針頭注射器,當針頭的PVDF液滴受外加強電場作用時,液滴克服表面張力進而噴射出極細的壓電微奈米纖維,與利用X-Y數位控制帄台整齊的收集電紡纖維,藉由調整帄台的移動速度可輕易地控制壓電纖維的線徑;紡絲過程中,PVDF壓電纖維因同時受拉伸應變與電場的作用,使纖維內部晶體產生電極化並轉換成偶極矩呈帄行狀態的β相壓電結晶結構。此外,本研究藉由多壁奈米碳管的添加,除了能有效提升纖維本身的機械性質,亦能增加β相壓電結晶,可使纖維的抗拉強度及壓電特性均獲得有效地提升。藉由黃光微影及金屬蝕刻技術於厚度50μm的聚亞醯胺(Polyimide,PI)撓性基板上,製作出間距100μm的指叉式電極結構,爾後將長度10~20mm、線徑為700~1000nm的PVDF壓電纖維陣列與電極結構進行封裝,並施加高壓電場再極化處理,以提升壓電纖維於d33模式的轉換效率。結果顯示,指叉式PVDF撓性壓電纖維能量擷取元件能在低頻4Hz的振動下產生15mV的開路電壓(Open circuit voltage),6Hz的振動下可產生30mV的開路電壓,相較於未經指叉式電極再極化的壓電纖維,其輸出電壓有1-2倍的提升。
Abstract
This study used electrospinning to fabricate a polyvinylidene fluoride (PVDF) piezoelectric nanofiber harvesting device with interdigitated electrode to capture ambient energy. According to d33 mechanical-electric energy conversion mode, the energy harvesting device can be applied on the low frequency ambient vibration and impact abilities for the transformation mechanical energy into electrical energy effectively. First, the PVDF powder was mixed in acetone solution uniformly and the dimethyl sulfoxide (DMSO) was mixed with multi-walled carbon nanotube (MWCNT) to prepare PVDF macromolecular solution. The mixed solution was filled in a metals needle injector and contacted hundreds of voltage. After the PVDF drop in the needle was subjected to high electric field, the drop overcame surface tension of the solution itself, then extremely fine PVDF fiber was formed and spun out. The electrospun was collected orderly using X-Y digital control stage and the linear diameter of electrospun can be controlled easily by adjusting the travelling speed of the stage. In the spinning process, as affected by stretching strain and electric field at the same time, the PVDF piezoelectric fiber resulted in electric polarization and transformed β piezoelectric crystal phase, in which the dipoles are oriented in the same direction. Furthermore, MWCNT was added to improve the mechanical properties of fiber and increase β phase, to enhance the tensile strength and piezoelectric property of PVDF fiber effectively. Finally, the photolithography was used to fabricate interdigitated electrodes with 100μm gap on the flexible PI substrate. The PVDF fibers, with a length and diameter of approximately 1cm and 700-1000nm, were aligned on interdigitated electrodes and packaged with the PI film. In order to increase the conversion efficiency of piezoelectric fiber in d33 mode, the PVDF fibers were repolarized in a high electric field. The results showed that the PVDF fiber energy harvesting device can generate 15mV open-circuit voltage under low frequency vibration of 4Hz and generate above 30mV open-circuit voltage under 6Hz vibrations. As compared with the piezoelectric fiber not repolarized by interdigitated electrode, its output voltage was increased by1- 2 times.
目次 Table of Contents
第一章 緒論 1
1.1前言 1
1.2 研究背景 2
1.3 能量擷取技術 3
1.4 文獻回顧 6
1.5研究目的 10
1.6本文架構 11
第二章 壓電原理及結構分析 12
2.1壓電原理 12
2.1.1正壓電效應 (DIRECT PIEZOELECTRIC EFFECT)12
2.1.2 逆壓電效應 (CONVERSE PIEZOELECTRIC EFFECT)13
2.1.3 極化處理 14
2.2壓電材料 14
2.2.1壓電材料種類 15
2.2.2壓電材料的相關應用 15
2.2.3 壓電操作模式 16
2.3壓電材料之本構方程式 17
2.3.1壓電參數之定義 20
2.4 PVDF壓電纖維於D33模式之靜力作用 23
2.4 .1 PVDF壓電纖維之應力與電荷轉換關係 24
2.5 PVDF纖維變型理論分析 26
第三章 電紡織技術 31
3.1電紡織技術背景 31
3.1.1電紡絲操作原理 32
3.2壓電纖維之材料選用 35
3.2.1 PVDF (POLYVINYLIDENE FLUORIDE)材料特性 35
3.3 PVDF電紡絲製程方法 37
3.3.1實驗儀器設備介紹 37
3.3.2 PVDF溶液配製 38
3.3.3 溶液的特徵 39
3.3.4 PVDF纖維電紡詳細流程 40
3.4電紡絲製程操作參數 40
3.4.1吐絲針頭尺寸 41
3.4.2驅動電壓 42
3.4.3收集速度 42
第四章指叉式電極製作 44
4.1 PVDF纖維之能量擷取裝置製作設計 44
4.2製程介紹 46
4.2.1基板選用 46
4.2.2指叉式電極之設計 47
4.2.3濺鍍製程 (SPUTTER) 48
4.2.4黃光微影製程 (PHOTOLITHOGRAPHY) 48
4.2.5 金屬蝕刻製程(ETCHING) 50
4.2.6製作流程 51
4.3 PVDF纖維之極化 53
第五章 結果與討論 55
5.1 實驗方法 55
5.2電紡纖維的控制與收集能力觀察 55
5.2.1 PVDF纖維的線徑 57
5.2.2 PVDF纖維缺陷之顯微特徵 58
5.2.3 PVDF纖維孔洞 60
5.3 PVDF壓電纖維能量擷取裝置電性量測 61
5.3.1量測實驗架構規劃 61
5.3.2 發電性能詴驗 62
5.3.3實驗一 振動電性量測系統架設 63
5.3.4 PVDF壓電纖維能量擷取裝置振動電性量測 64
5.3.5 實驗二 衝擊詴驗量測系統架設 68
5.3.6 PVDF壓電纖維能量擷取裝置衝擊電性量測 69
5.3.7 帄行式電極PVDF壓電纖維能量擷取裝置電性量測 73
六 結論 78
6.1 結果與討論 78
6.2未來展望 79
參考文獻 81
參考文獻 References
1. J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next Century Challenges: Mobile Networking for Smart Dust,” The ACM Conference on Mobile and Computing Networking, New York, USA, pp. 271-278, 1999.
2. J. Kymissis, C. Kendall, J. Paradiso and N. Gershenfeld, “Parasitic Power Harvesting in Shoes,” Second IEEE International Symposium on Wearable Computers, Pittsburgh, PA, pp. 132-139, 1998.
3. J.Y. Chang and M. Gutierrez, “Self-Powered Kinetic Energy Harvesters for Seek-Induced Vibrations in Hard Disk Drives,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 4, No. 1, pp. 96–106, 2010.
4. E.O. Torresl and G.A. Rincon-Mora, “Long-Lasting, Self-Sustaining, and Energy-Harvesting System-in-Package (SIP) Wireless Micro-Sensor Solution,” International Conference on Energy, Environment and Disasters, Charlotte, North Carolina, USA, pp. 24-30, 2005.
5. S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O'Donnell, C.R. Saha and S. Roy, “A Micro Electromagnetic Generator for Vibration Energy Harvesting,” Journal of Micromechanics and Microengineering, Vol. 17, No. 7, pp. 1257-1265, 2007.
6. J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Liao and B.C. Cai, “A MEMS-Based Piezoelectric Power Generator Array for Vibration Energy Harvesting,” Microelectronics Journal, Vol.39, No. 5, pp. 802–806, 2008.
7. B. O'Regan and M. Gratzel, “A Low-cost, High-efficiency Solar Cell based on Dye-sensitized Colloidal TiO2 Films,” Nature, Vol. 353, pp.737-740, 1991.
8. C.T.Pan, Z.H. Liu, Y.C. Chen, C.F. Liu, “ Design and Fabrication of Flexible Piezo- Microgenerator by Depositing ZnO Thin Films on PET Substrates,” Sensors and Actuators A: Physical, Vol. 159, Issue 1, pp. 96-104, 2010.
9. http://cqd.blogspot.com/2008/07/blog-post_24.html
10. H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Donga, L. Wang, D. Chen, B.C. Cai and Y. Liu, “Fabrication and Performance of MEMS-Based Piezoelectric Power Generator for Vibration Energy Harvesting,” Microelectronics Journal, Vol. 37, No. 11, pp. 1280–1284, 2006.
11. Z.L. Wang, “Energy Harvesting for Self-Powered Nanosystems,” Nano Research, Vol. 1, No.1, pp. 1-8, 2008.
12. T. Starner, “Human Powered Wearable Computing,” IBM Systems Journal, Vol. 35, No. 3-4, pp. 618-629, 1996.
13. Z.L. Wang and J. Song, “Piezoelectric Nanogenerators based on Zinc Oxide Nanowire arrays,” Science 14, Vol. 312, No. 5771, pp. 242-246, 2006.
14. R. Yang, Y. Qin, C. Li, G. Zhu and Z.L. Wang, “Converting Biomechanical Energy into Electricity by A Muscle Movement Driven Nanogenerator,” Nano Lett., Vol. 9, No. 3, pp.1201 – 1205, 2009.
15. N. Jalili, “Distributed Sensors and Actuators via Electronic-Textiles,” National Textile Center Annual Report, No. M04-CL05, 2005.
16. T.H. Fang, P.H. Hsieh and J.H. Tsai, “Fabrication and Dynamic Characteristics of Piezoelectric Nanogenerator System with ZnO Nanorods,” Journal of the Vacuum Society, Vol. 22, No. 3, pp. 17-22, 2009.
17. X. Chen, S. Xu and N. Yao, “1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers,” Nano Lett., Vol. 10, No. 6, pp. 2133-2137, 2010.
18. F. Li, W. Liu, C. Stefanini, X. Fu and P. Dario, “A Novel Bioinspired PVDF Micro/Nano Hair Receptor for A Robot Sensing System,” Sensor, Vol. 10, No. 1, pp. 994-1011, 2010.
19. J. Curie, and P. Curie, “Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces,” Bulletin. Soc. Min de France, Vol. 3, pp. 90-102. 1880.
20. 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊圖書股份有限公司,1994年12月。
21. 鄭世裕,“壓電材料及其應用”,電子月刊,第七卷,第四期,pp.162-169,2001年。
22. Y. Wada and R. Hayakawa, “Piezoelectricity and Pyro-electricity of Polymers,” Japanese Journal of Applied Physics., Vol. 15, No.11, pp. 2041-2057, 1976.
23. D.C.S. Bien, N.S.J. Mitchell and H.S. Gamble, “Micro-Machined Passive Valves: Fabrication Techniques, Characterisation and Their Application,” Springer US, pp. 741–800, 2006.
24. F. Lu, H.P. Lee and S.P. Lim, “Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electromechanical-Systems Applications,” Smart Materials and Structures, Vol. 13, pp. 57–63, 2004.
25. A.C. Ugural, “Stresses in Plates and Shells,” 2nd Ed., New York: McGraw-Hill, 1999.
26. X.L. Rayleigh, “On the Equilibrium of Liquid Conducting Masses Charged with Electricity,” Philosophical Magazine Series, Vol. 14, No. 87, pp. 184-186, 1882.
27. A. Formhals, US Patent, No. 1-975-504, 1934.
28. P.K. Baumgarten, “Electrostatic Spinning of Acrylic Microfibers,” Journal of Colloid and Interface Science, Vol. 36, Issue 1, pp. 71-79, 1971.
29. G. Taylor, “Electri Cally Driven Jets,” The Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 313, pp. 453-475, 1969.
30. E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Pawlowski and G.L. Bowlin, “Tailoring Tissue Engineering Scaffolds Using Electrostatic Processing Techniques: A Study of Poly(Glycolic Acid) Electrospinning,” Journal of Macromolecular Science, Vol. 38, Issue 12, pp. 1231-1243, 2001.
31. J. Kameoka, R. Orth, Y. Yang, D. Czaplewski, R. Mathers, G.W. Coates and H.G. Craighead, “A Scanning Tip Electrospinning Source for Deposition of Oriented Nanofibres,” Nanotechnology, Vol. 14, No. 10, pp. 1124-1129, 2003.
32. A.Theron, E. Zussman and A.L. Yarin, “Electrostatics Field Assisted Alignment of Electrospun Nanofibers,” Nanotechnology, Vol. 12, pp. 384, 2001.
33. D. Li, Y. Wang and Y. Xia, “Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays,” Nano Letters, Vol. 3, No. 8, pp. 1167-1171, 2003.
34. G. F. Zheng, L. Y. Wang, H. L. Wang, D. H. Sun, W.W. Li and L.W. Lin, “Deposition Characteristics of Direct-Write Suspended Micro/Nano-Structures,” Advanced Materials Research, Vols. 60-61, pp. 439-444, 2009.
35. D. Sun, C. Chang, S. Li and L.W. Lin, “Near-Field Electrospinning,” NanoLetters, Vol. 6, No. 4, pp. 839-842, 2006.
36. C. Giordano, I. Ingrosso, M.T. Todaro, G. Maruccio, S. De Guido, R. Cingolani, A. Passaseo and M. De Vittorio, “AlN on Polysilicon Piezoelectric Cantilevers for Sensors/Actuators,” Microelectronic Engineering, Vol. 86, No. 4, pp. 1204-1207, 2009.
37. H Kawai, “The Piezoelectricity of Poly (Vinylidene Fluoride),” Japanese Journal of Applied Physics, Vol. 8, pp. 975-976, 1969.
38. I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab and N.A. Hakeem, “Structural, Optical and Dielectric Behavior of PVDF Films Filled with Different Concentrations of Iodine,” Physica B, Vol. 405, pp. 94–98, 2010.
39. G.T. Davis, T.T. Wang and J.M. Herbert, “The Applications of Ferroelectric Polymers,” Glasgow: Blackie, pp. 37–65, 1988.
40. M. Neidhofer, F. Beaume, L. Ibos, A. Bernes and C. Lacabanne, “Structural Evolution of PVDF during Storage or Annealing,” Polymer, Vol. 45, pp. 1679–1688, 2004.
41. P. Sajkiewicz, A. Wasiak and Z. Goclowski, “Phase Transitions during Stretching of Poly (vinylidene fluoride),” European Polymer Journal, Vol. 35, pp.423–429, 1999.
42. Y. Peng and P. Wu, “A Two Dimensional Infrared Correlation Spectroscopic Study on The Structure Changes of PVDF during The Melting Process,” Polymer, Vol. 45, pp. 5295–5299, 2004.
43. Y. Chen and C.Y. Shew, “Conformational Behavior of Polar Polymer Models under Electric Fields,” Chemical Physics Letters, Vol. 378, pp. 142–147, 2003.
44. 熊傳溪、李蕊,“PA11/PVDF 合金材料的製備和電性能的研究”,武漢理工大學,pp.9-10,2007。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code