Responsive image
博碩士論文 etd-0901111-165344 詳細資訊
Title page for etd-0901111-165344
論文名稱
Title
六足機器人跨越非連續地形之行走策略
A Walking Strategy for Hexapod Robots on Discontinuous Terrain
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-26
繳交日期
Date of Submission
2011-09-01
關鍵字
Keywords
行走策略、地形、六足機器人、步態產生
terrain, locomotion strategy, gait generation, hexapod robot
統計
Statistics
本論文已被瀏覽 5690 次,被下載 1629
The thesis/dissertation has been browsed 5690 times, has been downloaded 1629 times.
中文摘要
本研究針對足式機器人相較於輪式機器人的最大優點:於非連續地形上移動,設定地形參數及擬定行走策略。首先建立一隨機分佈的參數化地形,並設定機器人形態及尺寸參數,據此建立六足機器人移動模型,其中包含斜向移動及旋轉移動的步態。此行走策略能依據地形選擇每一跨步的起點、終點及步幅。最後以程式驗證,並使用預先計算下一步有無立足點的方法以找尋較短路徑。此研究使用參數化的隨機地形,除了對地形有更詳盡的描述外,還可以依需求調整各地形參數,使足式機器人有更多的發展及應用。
Abstract
This thesis sets up terrain parameters and locomotion strategies of a hexapod robot walking on variable and discontinuous terrain. Walking on this kind of terrain is the greatest advantage of legged robots compared with wheeled robots. First, establish a randomly distributed parameterized terrain. Second, set up morphological parameters and dimension parameters of the robot. Third, build kinematic model and generate continuous gaits of the robot, including crab gaits and turning gaits. The locomotion strategy can determine every AEP ,PEP and stride depending on terrain. Finally, verify the strategy through computer programming and find shorter path by calculating if foothold is available in advance. Because of applying randomly distributed parameterized terrain, in addition to describing the terrain more comprehensively, the terrain parameters can be adjusted easily according to different needs. This research will bring about more applications and developments of legged robots.
目次 Table of Contents
目錄 .................................................................................................................................. i
圖次 ................................................................................................................................ iii
表次 ............................................................................................................................... vii
摘要 ............................................................................................................................... viii
Abstract ............................................................................................................................ ix
第一章 緒論 .............................................................................................................. 1
1.1 六足機器人發展簡介 .................................................................................. 1
1.2 六足機器人與非連續地形 .......................................................................... 2
1.3 研究動機與重要性 ...................................................................................... 5
第二章 機器人尺寸及工作範圍設計 ...................................................................... 6
2.1 機器人足部機構設計 .................................................................................. 6
2.2 機器人單足工作範圍設計 .......................................................................... 9
2.3 機器人尺寸及形態設計 ............................................................................ 10
第三章 非連續地形之建立 .................................................................................... 12
3.1 非連續地形之分類 .................................................................................... 12
3.2 非連續地形之建立 .................................................................................... 13
3.3 非連續地形之分析 .................................................................................... 14
3.4 非連續地形之修改與比較 ........................................................................ 15
3.4.1 調整圓個數改變地形覆蓋率 ........................................................ 15
3.4.2 調整圓半徑改變可立足區域集中度 ............................................ 16
3.5 非連續地形之無因次設計參數 ................................................................ 17
第四章 機器人行走步態設計 ................................................................................ 20
4.1 機器人直行步態初步構想 ........................................................................ 20
4.2 機器人直線前進步態程式設計 ................................................................ 22
4.2.1. 機器人直線前進步態資料庫方法 ................................................ 22
4.2.2. 機器人直線前進步態結果分析 .................................................... 24
4.3 機器人旋轉步態設計 ................................................................................ 25
4.3.1. 機器人繞重心旋轉初步構想 ........................................................ 25
4.3.2. 繞機器人中心旋轉程式設計 ........................................................ 26
4.3.3. 機器人最大旋轉角度步態初步構想 ............................................ 27
4.3.4. 最大旋轉角度旋轉程式設計 ........................................................ 28
4.3.5. 繞C.G.旋轉與最大旋轉角度旋轉設計結果分析 ........................ 29
4.3.6. 繞任意點旋轉步態初步構想與程式設計 .................................... 29
4.3.7. 繞任意點旋轉設計結果分析 ........................................................ 31
4.4 機器人步態變換 ........................................................................................ 32
4.4.1 機器人步態變換初步構想 ............................................................ 32
4.4.2 機器人步態變換程式實作 ............................................................ 33
第五章 機器人行走策略 ........................................................................................ 36
5.1 機器人在非連續地形上的行走策略 ........................................................ 36
5.2 尋找立足點 ................................................................................................ 38
5.3 地形邊緣檢測 ............................................................................................ 38
5.4 機器人跨越非連續地形直線移動步態選擇法 ........................................ 40
5.5 機器人步態記錄方法 ................................................................................ 42
5.6 機器人行走策略程式實作 ........................................................................ 44
5.7 於無因次化地形之機器人行走實驗 ........................................................ 45
第六章 結果與討論 ................................................................................................ 51
Appendix ....................................................................................................................... 53
References ...................................................................................................................... 54
參考文獻 References
[1] Wilson, D. M., 1966, “Insect walking,” Annual Review of Entomology, 11, pp. 103-121.
[2] Wilson, D. M., 1967, “Stepping patterns in tarantula spiders.” J Exper Biology, 47(1), pp. 133-151.
[3] McGhee, R. B. and Iswandhi, G. I., 1979, “Adaptive Locomotion of a Multilegged Robot over Rough Terrain,” IEEE Transactions Systems, Man, and Cybernetics, 9(4), pp. 176-182.
[4] Ozguner, F., Tsai, S. J., and McGhee, R. B., 1984, “An Approach to the Use of Terrain-Preview Information in Rough Terrain Locomotion by a Hexapod Walking Machine,” International Journal of Robotics Research, 3(2), pp. 134-146.
[5] Saranli, U., Buehler, M., and Koditschek, D. E., “RHex: a Simple and Highly Mobile Hexapod Robot,” The International Journal of Robotics Research, 20(7), pp. 616-631, 2001.
[6] Apostolopoulos, D., 1995 “Locomotion Configuration of a Robust Rappelling Robot,” Proceedings of the International Conference on Intelligent Robots and Systems, 3, pp. 280-284.
[7] Song, S. M. and Choi B. S., 1989, A Study on Continuous Follow-The-Leader (FTL) Gaits: An Effective Walking Algorithm over Rough Terrain,” Mathematical Biosciences, 97, pp. 199-233.
[8] Pratiar, D. K., Deb, K., and Ghosh, A., 2002, “Optimal Path and Gait Generations Simultaneously of a Six-Legged Robot using GA-fuzzy Approach,” Robotics and Autonomous Systems, 41, pp. 1-20.
 
[9] Gonzalez de Santos, D., Garcia, E., and Estremera, J., 2007 “Improving Walking-robot Performances by Optimizing Leg Distribution,” Auton Robot, 23(4), pp. 247-258.
[10] Estremera, J., Cobano, J. A., and Gonzalez de Santos, P., 2010, “Continuous free-crab gaits for hexapod robots on natural terrain with forbidden zones: an application to humanitarian demining,” Robotics and Autonomous Systems, 58,
pp. 700-711.
[11] Yang, J. M., 2009, “Fault-Tolerant Gait Planning for a Hexapod Robot Walking over Rough Terrain,” Journal of Intelligent and Robotic Systems, 54(4),
pp. 613–627.
[12] Cobano, J. A., Estremera, J., and Gonzalez de Santos, P. G., 2010, “Accurate Tracking of Legged Robots on Natural Terrain,” Autonomous Robots, 28(2), pp. 231-244.
[13] Yang, J. M. and Kim, J.H., 1999, “Optimal Fault Tolerant Gait Sequence of the Hexapod Robot with Overlapping Reachable Areas and Crab Walking,” IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 29(2), pp. 224-235.
[14] 吳峴臣, 2010, 六足機器人之力回饋功能應用, 碩士論文, 國立中山大學機械與機電工程研究所
[15] 吳東育, 2009, 六足機器人形態因素對其運動穩定性之影響, 碩士論文, 國立中山大學機電研究所
[16] Irawan, A. and Nonami, K., 2011, “Optimal Impedance Control Based on Body Inertia for a Hydraulically Driven Hexapod Robot Walking on Uneven and Extremely Soft Terrain,” Journal of Field Robotics, 28(5), pp. 690–713.
 
[17] Miao, S. and Howard, D., 2000, “Optimal Tripod Turning Gait Generation for Hexapod Walking Machines,” Robotica 18(6), pp. 639–649.
[18] Song, S. M. and Choi, B. S., 1990, “The Optimally Stable Ranges of 2n-legged Wave Gaits,” IEEE Transactions on Systems, Man. And Cybernetics, 20(4),
pp. 888-902.
[19] Gabriel, J. P. and Büschges, A., 2007, “Control of Stepping Velocity in a Single Insect Leg during Walk,” Phil. Trans. R. Soc., 365, pp. 251-271.
[20] Ritzmann, R. E., Quinn, R. D., and Fischer, M. S., 2004, “Convergent Evolution and Locomotion through Complex Terrain by Insects, Vertebrates and Robots,” Arthropod Structure and Development, 33(3), pp. 361-379.
[21] Kingsley, D. A., Quinn, R. D., and Ritzmann, R. E., 2003, "A Cockroach Inspired Robot with Artificial Muscles" International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan.
[22] Bell, W. J., Roth, L. M., and Nalepa, C.A., 2007, “Cockroaches: Ecology, Behavior, and Natural History,” Johns Hopkins University Press, Baltimore, Chap. 6.
[23] Song, S. M. and Choi, B. S., 1989, “A Study on Continuous follow-the-leader (FTL) gaits: an Effective Walking Algorithm over Rough Terrain,” Mathematical Biosciences, 1(97), pp. 199-233.
[24] Shih, C. L. and Klein, C. A., 1993, “An Adaptive Gait for Legged Walking Machines over Rough Terrain,” IEEE transactions on systems, man, and cybernetics, 23(4), pp. 1150-1155.
[25] Prabir, K. P. and Kar, D. C., 2000, “Gait Optimization through Search,” The International Journal of Robotics Research, 19(4), pp. 394-408.
 
[26] Yang, J. M. and Kim, J. H., 2000, “A Fault Tolerant Gait for a Hexapod Robot over Uneven Terrain,” IEEE Transactions on Systems, Man, and Cybernetics B, 30(1), pp. 172-180.
[27] Wang, Z. Y., Ding, X. L., and Rovetta, A., 2010, “Analysis of typical locomotion of a symmetric hexapod robot,” Robotica, 28, pp. 893-907.
[28] Shigeo Hirose, 1984, “A Study of Design and Control of a Quadruped Walking Vehicle,” International Journal of Robotics Research, 3(2), pp. 113-133.
[29] Yang, J. M., 2006, “Fault-tolerant crab gaits and turning gaits for a hexapod robot,” Robotica, 24(2), pp. 269–270.
[30] Seipe, Justin E., Holmes, Philip J., and Full, Robert J., 2004, “Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions,” Biological cybernetics, 91(2), pp. 76-90.
[31] Ponticelli, R. and Gonzalez de Santos, P., 2010, “Obtaining Terrain Maps and Obstacle Contours for Terrain-recognition Tasks,” Mechatronics, 20, pp. 236-250.
[32] Haralick, R. M. and Shapiro, L. G., 1992, Computer and Robot Vision Volume I, Addison-Wesley, Chap. 5.
[33] Frantsevicha, L. I. and Cruse, H., 2005, “Leg Coordination During Turning on an Extremely Narrowsubstrate in a Bug, Mesocerus marginatus (Heteroptera, Coreidae),” Journal of Insect Physiology, 51, pp. 1092–1104.
[34] Jeck, T. and Cruse, H., 2007, “Walking in Aretaon asperrimus,” Journal of Insect Physiology, 53, pp. 724–733.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code