Responsive image
博碩士論文 etd-0902104-124008 詳細資訊
Title page for etd-0902104-124008
論文名稱
Title
葉輪加工路徑之改善
Improving Tool Paths for Impellers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-19
繳交日期
Date of Submission
2004-09-02
關鍵字
Keywords
刀具姿態平滑化、五軸加工、B-Spline刀具路徑、葉輪
Tool Orientation Smoothing, Five-Axis Machining, B-Splines Tool Paths, Impeller
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
葉輪(Impeller)為航太工業、能源工業與精密機械工業中的關鍵零組件。在考量高精度及結構完整性下,會選用切削加工來製造。葉輪的幾何外型複雜且具有高度的干涉程度,因此多軸加工技術為不可或缺的技術。

本論文的目的在改善葉輪之加工路徑,包含點加工刀具姿態之平滑化、B-Spline刀具路徑以及側銑加工路徑之建構。經由實際加工試驗發現:藉由刀具姿態平滑化處理,可得到較好的加工表面與較少的加工時間;B-Spline路徑之建構,可減少加工程式碼所需的記憶空間及減少加工所需時間。側銑刀具路徑之建構,可改善加工表面的粗糙度。
Abstract
Impellers are important components in the field of aerospace, energy technology, and precision machine industries. Considering the high accuracy and structural integrity, impellers might be manufactured by cutting. Due to their complex geometries and high degrees of interference in machining, multi-axis machines are requested to produce impellers.

The object of this thesis is to improve 5-axis tool paths for surface quality of impellers by smoothing point cutting tool paths in terms of linear segments and B-Splines and by using flank milling technologies with linear segment and B-Splines tool paths. Experimental results show that the surface quality of impeller blades can be improved by point cutting with smoothed tool paths and by flank milling. Moreover, the required milling time can be reduced by 18 percent and 13percent based on smoothed linear tool paths and smoothed B-Splines tool paths, respectively.
目次 Table of Contents
目錄 I
圖目錄 II
表目錄 IV
摘要 V
Abstract VI

第一章 緒 論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究方法 4
1.4 論文大綱 5

第二章 葉輪幾何模型建立 6
2.1 B-Spline曲線與曲面插值計算 6
2.2 葉輪幾何模型建構 8

第三章 粗加工路徑建構 18
3.1 五軸粗加工路徑 19
3.2 五軸加工機之逆運動轉換 21
3.3 線性路徑加工進給速度計算 23

第四章 精銑加工路徑建構 26
4.1 葉片側銑路徑建構 26
4.2 葉片點加工路徑建構 30
4.3 輪轂曲面加工路徑建構 41
4.4 五軸B-Spline刀具路徑之建構 43

第五章 實際加工例 48
5.1 粗加工與半精銑加工 48
5.2 精銑加工 50
5.3 葉片表面粗糙度比較 54
5.4 實驗討論 56

第六章 結論與討論 57

參考文獻 59
參考文獻 References
[1] Goetz, A., 1970, Introduction to Differential Geometry, Addison Wesley Publishing Company, Inc.

[2] Gurunathan, B., and Dhande, S. G., 1987, “Algorithms for Development of Certain Classes of Ruled Surfaces,” Computer and Graphics, Vol. 11, No. 2, pp. 105-112.

[3] Smith, D. J. L., and Merryweather, H., 1973, “The Use of Analytic Surfaces for the Design of Centrifugal Impellers by Computer Graphics,” International Journal for Numerical Methods in Engineering, Vol. 7, pp. 137-154.

[4] Casey, M. V., 1983, “A Computational Geometry for the Blades and Internal Flow Channels of Centrifugal Compressors,” ASME Journal of Engineering for Power, Vol. 105, pp. 288-295.

[5] Liu, Y. T., 1994, “Surface Generation of Impellers of Centrifugal Compressors,” M. S. Thesis, National Sun Yat-sen University, Taiwan.

[6] Bohez, Erik L. J., Ranjith Senadhera, S. D., Pole, Ketan, Duflou, Joost R. , Tar, Tsau, 1997, “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” The International Journal of Advanced Manufacturing Technology, Vol. 13, pp. 248-255.

[7] Stute, G., Storr, A., and Sielaff, W., 1979, “NC Programming of Ruled Surfaces for Five-Axis-Machining,” CIRP Annals, Vol. 28. No. 1, pp. 267-271.

[8] Wu, C. Y., 1995, “Arbitrary Surface Flank Milling of Fan, Compressor, and Impeller Blades,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 117, pp. 534- 539.

[9] Elber, G., and Fish, R., 1997, “5-Axis Freeform Surface Milling Using Piecewise Ruled Surface Approximation,” ASME Journal of Manufacturing Science and Engineering, Vol. 119, pp. 383-387.

[10] Sorby, K., Tonnessen, K., and Torjusen, J. E., 2000, “Improving High Speed Flank Milling Operations in Multi-Axis Machines,” CIRP Annals, Vol. 49, No. 1, pp. 371-374.

[11] Tsay, D. M., and Her, M. J., 2001, “Accurate 5-Axis of Twisted Ruled Surfaces,” ASME Journal Manufacturing Science and Engineering, Vol. 123, pp. 731-374.

[12] Tsay, D. M., Chen, H. C., and Her, M. J., 2002, “A Study on Five-Axis Flank Machining of Centrifugal Compressor Impellers,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 177-181.

[13] Wang, X. C., and Yu, Y., 2002, “An Approach to Cutter Position for Five-Axis Free-Form Surface Side Finishing Milling,” Journal of Materials Processing Technology, Vol. 123, pp. 191-196.

[14] Lartigue, C., Duc, E., Affouard, A., 2003, “Tool Path Deformation in 5-Axis Flank Milling Using Envelope Surface,” Computer-Aided Design, Vol. 35, pp. 375-382.

[15] Bedi, S., Mann, S., and Menzel, C., 2003, “Flank Milling with Flat End Milling Cutters,” Computer-Aided Design, Vol. 35, pp. 293-300.

[16] Menzel, C., Bedi, S., and Mann, S., 2004, “Triple Tangent Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 36, pp. 289-296.

[17] Chiou, J. C. J., 2004, “Accurate Tool Position for Five-Axis Ruled Surface Machining by Swept Envelope Approach,” Computer-Aided Design, Vol. 36, pp. 967-974.

[18] Takeuchi, Y., and Watanabe, T., 1992, “Generation of 5-Axis Control Collision-Free Tool Path and Postprocessing for NC Data,” CIRP Annals, Vol. 41, No. 1, pp. 539-542.

[19] Elber, G., and Cohen, E., 1994, “Toolpath Generation for Freeform Surface Models,” Computer-Aided Design, Vol. 26, No. 6, pp. 490-496.

[20] Morishige, K., Takeuchi, Y., and Kase, K., 1999, “Tool path Generation Using C-Space for 5-Axis Control Machining,” ASME Journal of Manufacturing Science and Engineering, Vol. 121, pp. 144-149.

[21] Tsay, D. M., Yan, W. F., and Ho, H. C., 2001, “Generation of Five-Axis Cutter Paths for Turbomachinery Components,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 123, pp. 50-56.

[22] Chiou, C. J., and Lee, Y. S., 2002, “A Machining Potential Field Approach to Tool Path Generation for Multi-axis Sculptured Surface Machining,” Computer-Aided Design, Vol. 34, pp. 357-371.

[23] Lauwers, B., Dejonghe, P., and Kruth, J. P., 2003, “Optimal and Collision Free Tool Posture in Five-Axis Machining through the Tight Integration of Tool Path Generation and Machine Simulation,” Computer-Aided Design, Vol. 35, pp. 421-432.

[24] Balasubramaniam, M., Sarma, S. E., and Marciniak, K., 2003, “Collision-Free Finishing Toolpaths from Visibility Data,” Computer-Aided Design, Vol. 35, pp. 359-374.

[25] Gray, P. J., Ismail, F., and Bedi, S., 2004, “Graphics-Assisted Rolling Ball Method for 5-Axis Surface Machining,” Computer-Aided Design, Vol. 36, pp. 653-663.

[26] Choi, B. K., Park, J. W., and Jun, C. S., 1993, “Cutter-location Data Optimization in 5-Axis Surface Machining,” Computer-Aided Design, Vol. 25, No. 6, pp. 377-386.

[27] Zhao, X., Tsutsumi, M., Koreta, N., Ge, D., and Chen, L., 1996, “Determination of Optimum Tilting Angel of Ball-End Mill in 5-Axis Control Machining -Determination Based on Finished Surface Roughness and Application of Neural Network,” 精密工學會誌, Vol. 62, NO. 7, pp. 1019-1023.

[28] Zhao, X., Tsutsumi, M., Koreta, N., and Ge, D., 1997, “Determination of Optimum Tilting Angel of Ball-End Mill in 5-Axis Control Machining -In the Case of Spherical Surface Machining Based on Finished Surface Roughness,” 精密工學會誌, Vol. 63, NO. 7, pp. 992-996.

[29] Zhao, X., Koreta, N., and Tsutsumi, M., 1998, “Surface Roughness Generated by Ball-End Mill on Five-Axis Controlled Machining Centers,” 精密工學會誌, Vol. 64, NO. 12, pp. 1826-1830.

[30] Jun, C. S., Cha, K., and Lee Y. S., 2003, “Optimizing Tool Orientation for 5-Axis Machining by Configuration-Space Search Method,” Computer-Aided Design, Vol. 35, pp. 549-566.

[31] Ho, M. C., Hwang, Y. R., and Hu, C. H., 2003, “Five-Axis Tool Orientation Smoothing Using Quaternion Interpolation Algorithm,” International Journal of Machine Tools & Manufacture, Vol. 43, pp. 1259-1267.

[32] Chou, J. J., and Yang, D. C. H., 1991, “Command Generation for Three-Axis CNC Machining,” Journal of Engineering for Industry, Vol. 113, pp. 305-310.

[33] Chou, J. J., and Yang, D. C. H., 1992, “On the Generation of Coordinated Motion of Five-Axis CNC/CMM Machines,” Journal of Engineering for Industry, Vol. 114, pp. 15-22.

[34] Shpitalni, M., Koren, Y., and Lo, C. C., 1994, “Realtime Curve Interpolators,” Computer-Aided Design, Vol. 26, pp. 832-838.

[35] Yang, D. C. H., and Kong, T., 1994, “Parametric Interpolator Versus Linear Interpolator for Precision CNC Machining,” Computer-Aided Design, Vol. 26, No. 3, pp. 225-234.

[36] Lo, C. C., 1998, “A New Approach to CNC Tool Path Generation,” Computer-Aided Design, Vol. 30, No., 8, pp. 649-655.

[37] Zhang, Q. G., and Greenway, R. B., 1998, “Development and Implementation of a NURBS Curve Motion Interpolator,” Robotics and Computer-Integrated Manufacturing, Vol. 14, pp. 27-36.

[38] Yeh, S. S., and Hsu, P. L., 1999, “The Speed-Controlled Interpolator for Machining Parametric Curves,” Computer-Aided Design, Vol. 31, pp. 349-357.

[39] Yong, T., and Narayanaswami, R., 2003, “A Parametric Interpolator with Confined Chord Errors, Acceleration and Deceleration for NC Machining,” Computer-Aided Design, Vol. 35, pp. 1249-1259.

[40] Nam, S. H., and Yang, M. Y., 2004, “A Study on a Generalized Parametric Interpolator with Real-Time Jerk-Limited Acceleration,” Computer-Aided Design, Vol. 36, pp. 27-36.

[41] Morishige, K., Takahashi, S., and Takeuchi, Y., 2001, “NC Data Generation for Five-Axis Control Machining Using Curved Interpolation -Application of Five-Dimensional Non-Uniform B-spline Curve,” Proceedings of 1st International Seminar on Progress in Innovative Manufacturing Engineering, pp. 89-94.

[42] Tsay, D. M., Chen, C. W., and Chen, J. R., 2002, “Surface Generation and Machining with Rational B-splines for Turbomachinery Components,” Proceedings of ASME Turbo Expo 2002, Paper no. GT 2002-30485, Amsterdan, Netherlands.

[43] Rogers, D. F., and Adams, J. A., 1990, Mathematical Elements for Computer Graphics, 2nd, McGraw-Hill.

[44] Cox, M. G., 1972, “The Numerical Evaluation of B-splines,” J. Inst. Maths Applics, Vol. 10, pp. 134-149.

[45] deBoor C., 1972, “On Calculating with B-splines,” Journal of Approximation Theory, Vol. 6, pp. 50-62.

[46] Butterfield, K. R., 1976, “The Computation of all the Derivatives of S-spline Basis.” J. Inst. Maths Applics, Vol. 17, pp. 15-25.

[47] Choi, B. K., and Ju, S. Y., 1989, “Constant-Radius Blending in Surface Modeling,” Computer-Aided Design, Vol. 21, No. 4, pp. 213-220.

[48] Choi, B. K., 1991, Surface Modeling for CAD/CAM, Elsevier Science Publishers.

[49] Childs, P. R. N., and Noronha, M. B., 1999, “The Impact of Machining Techniques on Centrifugal Compressor Impeller Performance,” ASME Journal of Turbomachinery, Vol. 121, pp. 637-643.

[50] Hummel, F., Lötzerich, M., Cardamone, P., and Fottner, F., 2004, “Surface Roughness Effects on Turbine Blade Aerodynamics,” Proceedings of ASME Turbo Expo 2004, Paper No. GT 2004-53314, Vienna, Austria.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.174.168
論文開放下載的時間是 校外不公開

Your IP address is 18.191.174.168
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code