Responsive image
博碩士論文 etd-0902104-133527 詳細資訊
Title page for etd-0902104-133527
論文名稱
Title
yArsA蛋白在釀酒酵母熱耐受性所扮演的角色
The Role of yArsA in Thermotolerance of Saccharomyce cerevisiae
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
40
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-18
繳交日期
Date of Submission
2004-09-02
關鍵字
Keywords
熱耐受性、熱休克蛋白、自由基清除系統
thermotolerance, yArsA, Heat shock protein, ArsA, general stress response
統計
Statistics
本論文已被瀏覽 5670 次,被下載 12
The thesis/dissertation has been browsed 5670 times, has been downloaded 12 times.
中文摘要
大腸桿菌藉由ArsA蛋白使其對砷化物產生抗性。利用序列分析釀酒酵母Saccharomyces cerevisiae,發現YDL100c轉譯的yArsA與大腸桿菌ArsA具有同源性,殊不知yArsA在酵母細胞內所扮演的角色。YDL100c的缺失對於酵母細胞並非致死因素,卻降低酵母細胞對熱的耐受程度。
為了研究yArsA在釀酒酵母對熱耐性所扮演的角色,本實驗將野生株(WT)及突變株(KO)培養於25℃和37℃,並針對細胞內的自由基清除系統、trehalose的累積以及熱休克蛋白的誘導做分析。初步實驗結果證明:在37℃時,KO菌株的細胞內分子氧化程度較WT菌株為高,而其trehalose的含量則較WT菌株低,ROS的增加以及trehalose含量的減少是導致KO菌株細胞死亡的原因。利用RT-PCR分析自由基清除系統相關基因的mRNA表現量,結果指出在25℃或37℃下的WT和KO菌株,其TSL1及SOD1的表現並無顯著差異;而在37℃下,KO菌株的CTT1表現量則明顯低於WT 菌株。針對CTT1轉譯的catalase做酵素活性分析,在37℃時,KO菌株的catalase活性亦明顯較WT菌株低。Catalase活性的下降,trehalose含量的減少以及Hsp104p表現量較低等現象指出KO菌株在37℃下調控general stress response活化的缺失。本實驗證實yArsA在釀酒酵母面對stress的情況下,參與細胞內general stress response pathway的調控。
Abstract
The E. coli ArsA is involved in arsenic detoxification but the role of yArsA (ArsA homologue of Saccharomyces cerevisiae, encoded by YDL100c ORF) in yeast is still undefined. Disruption of YDL100c ORF is not lethal but the disrupted strain (KO) shows decreased thermotolerance.
To study the role of yArsA in thermotolerance, wild type (WT) and KO were grown at 25℃and 37℃, and assayed for the intracellular levels of trehalose accumulation and molecular oxidation, and the biosynthesis of heat shock proteins. The results show that molecular oxidation is higher and trehalose accumulation is lower in KO compared with WT grown at 37℃, suggesting that increased ROS and decreased trehalose content are the cause of cell death. Further analysis of the expression of ROS defense mechanisms show that there is no significant difference in TSL1 and SOD1 expression in WT and KO grown at 25℃ or 37℃ but the CTT1 expression in KO was much less than WT grown at 37℃. These observations are consistent with the assays of enzymatic activity of catalase and antioxidant GSH contents. Loss of catalase activity, decreased trehalose contents and Hsp104p expression suggest a deficiency in activation of general but not specific stress response in KO when grown at 37℃. Therefore, yArsA was involved in signaling the general stress response in stress tolerance network.
目次 Table of Contents
Introduction-------------------------------------------------------------------------------------1
Materials and Methods-----------------------------------------------------------------------11
Results-------------------------------------------------------------------------------------------17
Discussion---------------------------------------------------------------------------------------21
Tables--------------------------------------------------------------------------------------------23
Figures-------------------------------------------------------------------------------------------25
References---------------------------------------------------------------------------------------35
參考文獻 References
1. Vincent AC and Struhl K. ACR1, a yeast ATF/CREB repressor. Mol Cell Biol 1992, 12:5394-405.
2. Mukhopadhyay R and Rosen BP. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol Lett 1998, 168(1):127-36.
3. Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, and Ulaszewski S. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 1997, 9:819-28.
4. Zuniga S, Boskovic J, Jimenez A, Ballesta JP, and Remacha M. Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants. Yeast 1999, 10B:945-53.
5. Chen CM, Misra TK, Silver S, and Rosen BP. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 1986, 261(32):15030-8.
6. Mobley HL, Silver S, Porter FD, and Rosen BP. Homology among arsenate resistance determinants of R factors in Escherichia coli. Antimicrob Agents Chemother 1984, 2:157-61.
7. Dey S, Dou D, and Rosen BP. ATP-dependent arsenite transport in everted membrane vesicles of Escherichia coli. J Biol Chem 1994, 269(41):25442-6.
8. Bhattacharjee H and Rosen BP. Role of conserved histidine residues in metalloactivation of the ArsA ATPase. Biometals 2000, 4:281-8.
9. Rosen BP, Bhattacharjee H, Zhou T, and Walmsley AR. Mechanism of the ArsA ATPase. Biochim Biophys Acta 1999, 1461(2):207-15.
10. Zhou T, Radaev S, Rosen BP, and Gatti DL. Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J 2000, 19(17):4838-45.
11. Kurdi-Haidar B, Heath D, Aebi S, and Howell SB. Biochemical characterization of the human arsenite-stimulated ATPase (hASNA-I). J Biol Chem 1998, 273(35):22173-6.

12. Kurdi-Haidar B, Heath D, Naredi P, Varki N, and Howell SB. Immunohistochemical analysis of the distribution of the human ATPase (hASNA-I) in normal tissues and its overexpression in breast adenomas and carcinomas. J Histochem Cytochem 1998, (11):1243-8.
13. Kurdi-Haidar B, Hom DK, Flittner DE, Heath D, Fink L, Naredi P, and Howell SB. Dual cytoplasmic and nuclear distribution of the novel arsenite-stimulated human ATPase (hASNA-I). J Cell Biochem 1998, 71(1):1-10.
14. Shen J, Hsu CM, Kang BK, Rosen BP, and Bhattacharjee H. The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 2003, 3:369-78.
15. Ghosh M, Shen J, and Rosen BP. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci 1999, 96(9):5001-6.
16. Rosen BP. Families of arsenic transporters. Trends Microbiol 1999, 5:207-12.
17. Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol 1983, 101:202-11.
18. 葉瓊霞. (2001) 國立中山大學生物科學研究所碩士論文.
19. 郭雅帛. (2002) 國立中山大學生物科學研究所碩士論文.
20. 洪詩雅. (2002) 國立中山大學生物科學研究所碩士論文.
21. Costa V and Moradas-Ferreira P. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 2001, (4-5):217-46
22. Ruis H and Schuller C. Stress signaling in yeast. Bioessays 1995, 11:959-65.
23. Estruch F and Carlson M. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 1993, 7:3872-81.
24. Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, and Schuller C. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes 1998, 12(4):586-97.
25. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, and Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 1996, 15(9):2227-35.
26. Schmitt AP and McEntee K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci 1996, 93(12):5777-82.
27. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 2000, 146 (Pt 9):2113-20.
28. Beck T and Hall MN. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 1999, 402(6762):689-92.
29. Mayordomo I, Estruch F, and Sanz P. Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes.J Biol Chem 2002, 277(38):35650-6.
30. Smith A, Ward MP, and Garrett S. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 1998, 17(13):3556-64.
31. Fernandes L, Rodrigues-Pousada C, and Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 1997, 12:6982-93.
32. Kuge S, Jones N, and Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 1997, 16(7):1710-20.
33. Wemmie JA, Steggerda SM, and Moye-Rowley WS. The Saccharomyces cerevisiae AP-1 protein discriminates between oxidative stress elicited by the oxidants H2O2 and diamide. J Biol Chem 1997, 272(12):7908-14.
34. Kuge S, Toda T, Iizuka N, and Nomoto A. Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 1998, 8:521-32.
35. Izawa S, Maeda K, Sugiyama K, Mano J, Inoue Y, and Kimura A. Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 1999, 274(40):28459-65.
36. Yan C, Lee LH, and Davis LI. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 1998, 17(24):7416-29.
37. Schnell N, Krems B, and Entian KD. The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr Genet 1992, (4-5):269-73.
38. Kuge S and Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 1994, 13(3):655-64.
39. Izawa S, Maeda K, Sugiyama K, Mano J, Inoue Y, and Kimura A. Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 1999, 274(40):28459-65.
40. Carmel-Harel O, Stearman R, Gasch AP, Botstein D, Brown PO, and Storz G. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol Microbiol 2001, 39(3):595-605.
41. Grably MR, Stanhill A, Tell O, and Engelberg D. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol 2002, 44(1):21-35.
42. Smith BJ and Yaffe MP. Uncoupling thermotolerance from the induction of heat shock proteins. Proc Natl Acad Sci 1991, 88(24):11091-4.
43. Brennan RJ and Schiestl RH. Cadmium is an inducer of oxidative stress in yeast. Mutat Res 1996, 356(2):171-8.
44. Halliwell B and Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984, 219(1):1-14.
45. Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998, 16:1511-27.
46. Russell J, Ness J, Chopra M, McMurray J, and Smith WE. The assessment of the HO. scavenging action of therapeutic agents. J Pharm Biomed Anal 1994, 7:863-6.
47. Grant CM, Maciver FH, and Dawes IW. Stationary-phase induction of GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeast Saccharomyces cerevisiae. Mol Microbiol 1996, 4:739-46.
48. Skoneczny M, Chelstowska A, and Rytka J. Study of the coinduction by fatty acids of catalase A and acyl-CoA oxidase in standard and mutant Saccharomyces cerevisiae strains. Eur J Biochem 1988, 174(2):297-302.
49. Cohen G, Rapatz W, and Ruis H. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem 1988, 176(1):159-63
50. Hartig A and Ruis H. Nucleotide sequence of the Saccharomyces cerevisiae CTT1 gene and deduced amino-acid sequence of yeast catalase T. Eur J Biochem 1986, 160(3):487-90.
51. Izawa S, Inoue Y, and Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 1996, 320(1):61-7.
52. Van Loon AP, Pesold-Hurt B, and Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci U S A 1986, 83(11):3820-4.
53. Bermingham-McDonogh O, Gralla EB, and Valentine JS. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci 1988, 85(13):4789-93.
54. Davidson JF, Whyte B, Bissinger PH, and Schiestl RH. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1996, 93(10):5116-21
55. Sorger PK and Pelham HR. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell. 1988, 54(6):855-64.
56. Sorger PK and Nelson HC. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 1989, 59(5):807-13.
57. Xia W and Voellmy R. Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem 1997, 272(7):4094-102.
58. Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, and MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 2001, 20(14):3800-10.
59. Bonner JJ, Ballou C, and Fackenthal DL. Interactions between DNA-bound trimers of the yeast heat shock factor. Mol Cell Biol 1994, 1:501-8.
60. Becker J, Craig EA and Eur J Biochem. Heat-shock proteins as molecular chaperones 1994, 219(1-2):11-23.
61. Parsell DA, Taulien J, and Lindquist S. The role of Hsps in thermotolerance. Philos Trans R Soc Lond B Biol Sci 1993, 339(1289):279-86
62. Sanchez Y and Lindquist SL. HSP104 required for induced thermotolerance. Science 1990, 248(4959):1112-5.
63. Parsell DA, Kowal AS, Singer MA, and Lindquist S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 1994, 372(6505):475-8.
64. Parsell DA, Sanchez Y, Stitzel JD, Lindquist S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 1991, 353(6341):270-3.
65. Schirmer EC, Ware DM, Queitsch C, Kowal AS, and Lindquist SL. Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci 2001, 98(3):914-9.
66. Sanchez Y, Taulien J, Borkovich KA, and Lindquist S. Hsp104 is required for tolerance to many forms of stress. EMBO J 1992, 6:2357-64.
67. Ueom J, Kwon S, Kim S, Chae Y, and Lee K. Acquisition of heat shock tolerance by regulation of intracellular redox states. Biochim Biophys Acta 2003, 1642(1-2):9-16.
68. Seppa L, Hanninen AL, and Makarow M. Upregulation of the Hsp104 chaperone at physiological temperature during recovery from thermal insult. Mol Microbiol 2004, 52(1):217-25.
69. Grably MR, Stanhill A, Tell O, and Engelberg D. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol 2002, 44(1):21-35.
70. Jakob U, Lilie H, Meyer I, and Buchner J. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem 1995, 270(13):7288-94.
71. Sanchez Y, Parsell DA, Taulien J, Vogel JL, Craig EA, and Lindquist S. Genetic evidence for a functional relationship between Hsp104 and Hsp70. J Bacteriol 1993, 175(20):6484-91.
72. Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van der Zee P, and Wiemken A. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 1992, 209(3):951-9.
73. De Virgilio C, Burckert N, Bell W, Jeno P, Boller T, and Wiemken A. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 1993, 212(2):315-23.
74. Vuorio OE, Kalkkinen N, and Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 1993, 216(3):849-61.
75. Reinders A, Burckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, and De Virgilio C. Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 1997, (4):687-95.
76. Nwaka S, Mechler B, and Holzer H. Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett 1996, 386(2-3):235-8.
77. Nwaka S, Kopp M, and Holzer H. Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J Biol Chem 1995, 270(17):10193-8.
78. De Virgilio C, Hottiger T, Dominguez J, Boller T, and Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 1994, 219(1-2):179-86.

79. Lewis JG, Learmonth RP, and Watson K. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 1995, 141 (Pt 3):687-94.
80. Hottiger T, Boller T, and Wiemken A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 1987, 220(1):113-5.
81. Attfield PV. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 1987, 225(1-2):259-63.
82. Singer MA and Lindquist S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 1998, (11):460-8.
83. Benaroudj N, Lee DH, and Goldberg AL. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 2001, 276(26):24261-7.
84. Panek AD. Trehalose metabolism--new horizons in technological applications. Braz J Med Biol Res 1995, 2:169-81.
85. Singer MA and Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1998, 5:639-48.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.15.112.69
論文開放下載的時間是 校外不公開

Your IP address is 52.15.112.69
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code