Responsive image
博碩士論文 etd-0902107-153143 詳細資訊
Title page for etd-0902107-153143
論文名稱
Title
微壓電幫浦出力模擬研究
Simulation of force output of piezo-micro-pump
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-30
繳交日期
Date of Submission
2007-09-02
關鍵字
Keywords
微幫浦、ANSYS、壓電致動器
ANSYS, Micro-pump, Piezo-electric micro-actuators
統計
Statistics
本論文已被瀏覽 5680 次,被下載 4367
The thesis/dissertation has been browsed 5680 times, has been downloaded 4367 times.
中文摘要
在微機電的領域當中,壓電微致動器之模擬設計較一般熱驅動及靜電驅動微致動器複雜,主要是因為壓電材料偶合之計算困難,但是壓電材料的特性及優點受到大多數使用者所需求及依賴;一般就壓電微致動器的設計模擬,長久以來並無一簡易的方法來達成及做性能改善,只使用較沒有效率的試誤法來嘗試。
本篇論文研究著重於壓電式微幫浦之出力模擬研究,利用ANSYS軟體為架構,建立起整體微致動器及微幫浦組件的模擬系統,模擬微幫浦因壓電特性所產生的電壓值,所造成各種不同的共振頻率、背壓及流量等;建立驅動頻率、最大背壓與最大流量的關係,闡述觀察所得到的現象。
Abstract
Among the MEMS field, the design and simulation of piezoelectric micro-actuators are difficult as compared to thermal micro-actuators and electrostatic micro-actuators. The main reason of the piezo-electric material coupling effect is difficult to calculate. However the piezo-electric material has several advantages and characteristics for designing micro-actuators. Moreover, the design is usually done by the experimental or try-and-error method which is not so effective. It should be noted that there is not a simple method already developed for the design and simulation of the piezo-electric micro-actuators.
In this research we proposed to use the software of ANSYS for the simulation of piezo-electric micro-pump. Simulation of force output of piezo-micro-pump can use ANSYS software to establish the simulation system of piezo-micro-pump. The micro-pump will have different resonance frequency, back-pressure and fluid due to piezo-electric characteristic. In this study, the author used a square, rectangle and circle geometric shape to simulate the result, each geometric shape has four different kinds of size. As a result, there are twelve groups of different simulation results. We are able to using the chart to present and explain the relation between resonance frequency and displacement.
目次 Table of Contents
目錄.........................................................................................................Ⅰ
圖目錄.....................................................................................................Ⅳ
表目錄.....................................................................................................Ⅷ
中文摘要.................................................................................................Ⅸ
英文摘要................................................................................................ Ⅹ
第一章 緒論......................................................................................1
1-1 背景介紹.................................................................................1
1-2 研究動機.................................................................................2
1-3 研究目的.................................................................................3
1-4 文獻回顧.................................................................................4
1-4-1 靜電式...............................................................................5
1-4-2 形狀記憶合金..................................................................9
1-4-3 電磁式..............................................................................12
1-4-4 熱驅動式.........................................................................14
1-4-5 壓電式.............................................................................17
第二章 壓電原理............................................................................22
2-1 壓電簡介................................................................................22
2-2 壓電理論................................................................................27
2-2-1 概論.................................................................................27
2-2-2 壓電材料........................................................................28
2-2-3 壓電方程式....................................................................30
2-3 壓電諧振體............................................................................35
2-4 微幫浦....................................................................................37
第三章 模擬與分析.......................................................................40
3-1 壓電模擬................................................................................40
3-1-1 概論.................................................................................40
3-1-2 ANSYS簡介....................................................................42
3-2 模擬與分析............................................................................45
3-2-1前處理...............................................................................45
3-2-2分析...................................................................................46
3-2-3後處理...............................................................................46
第四章 結果與討論......................................................................48
4-1模擬結果.................................................................................48
4-1-1正方形.............................................................................49
4-1-2長方形..............................................................................58
4-1-3圓形...................................................................................67
4-2討論與分析.............................................................................76
4-2-1應變與位移關係式.........................................................78
4-2-2應力與位移關係式.........................................................79
4-2-3矩形(d31型)致動器方程式..............................................80
4-2-4圓形致動器方程式.........................................................81
4-2-5結果分析..........................................................................83
第五章 結論與展望........................................................................88
參考文獻.............................................................................................89
參考文獻 References
[1] S. Shoji and M. Esashi, Microflow Devices and Systems, Journal of Micromechanics and Microengineerig, Structures, Devices, and System, vol.4,
1994, pp.157-171.

[2]R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, A Bidirectional Silicon Micropump, Sensors and Actuators, 50, 1995, pp.81-86.

[3]Mir Majid Teymoori, Ebrahim Abbaspour-Sani, Design and Simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications, Sensors and Actuators, 117, 2005, pp.222-229.

[4]Eiji Makino, Takashi Mitsuya, Takayuki Shibata, Micromachining of TiNi shape memory thin film for fabrication of micropump, Sensors and Actuators, 79, 2000, pp.251-259.

[5]Eiji Makino, Takashi Mitsuya, Takayuki Shibata, Fabrication of TiNi shape memory micropump, Sensors and Actuators, 88, 2001, pp.256-262.

[6] H. j. Zhang, C. j. Qiu, Characterization and MEMS application of low
temperature TiNi(Cu) shape memory thin films, Materials Science and
Engineering, 438-440, 2006, pp.1106-1109.

[7]Christophe Yamahata, Frédéric Lacharme, Martin A. M. Gijs, Glass valveless micropump using electromagnetic actuation, Microelectronic Engineering, 78-79, 2005, pp.132-137.

[8] T. Pan, S. J. McDonald, E. M. Kai, B. Ziaie, A magnetically driven
PDMS micropump with ball check-valves, Journal of Micromechanics and Microengineering, 15, 2005, pp.1021-1026.

[9]W. Y. Sim, H. J. Yooh, O. C. Jeong, S. S. Yang, A phase-change type micro-pump with aluminum flap valves, Journal of Micromechanics and Microengineering, 13, 2003, pp.286-294.

[10] Jin-Ho Kim, Kwang-Ho Na, C. J. Kang, Yong-Sang Kim, A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass, Sensors and Actuators, 120, 2005, pp.365-369.

[11]Sung Rae Hwang, Woo Young Sim, Do Han Jeon, Geun Young Kim, Sang Sik Yang, James Jungho Pak, Fabrication and Test of a Submicroliter-level Thermopneumatic Micropump for Transdermal Drug Delivery, IEEE, 2005, pp.143-145.

[12]Nam-Trung Nguyen, Thai-Quang Truong, A full polymeric micropump with piezoelectric actuator, Sensors and Actuators, 97, 2004, pp.137-143.

[13]Jin-Ho Kim, C. J. Kang, Yong-Sang Kim, A disposablepolydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc, Microelectronic Engineering, 71, 2004, pp.119-124.

[14]Kan Junwu, Yang Zhigang, Peng Taijiang, Cheng Guangming, Wu Boda, Design and test of a high-performance piezoelectric micropump for drug delivery, Sensors and Actuators, 121, 2005, pp.156-161.

[15] Dae-Sik Lee, Hyun C. Yoon, Jong Soo Ko, Fabrication and characterization of a bidirectional valveless peristaltic micropump and its application to a flow-type immunoanalysis, Sensors and Actuator, 103, 2004, pp.409-415.

[16]Guo-Hua Feng, Eun Sok Kim, Piezoelectrically Actuated Dome-Shaped Diaphragm Micropump, IEEE Journal of Microelectromechanical System, vol. 14, No. 2, 2005, pp.192-199.

[17] A. Geipel, A. Doll, F. Goldschmidtböing, P. Jantscheff, N. Esser, U. Massign, P. Woias, Pressure-Independent Micropump With Piezoelectric Valves For Low Flow Drug Delivery System, IEEE MEMS, Istanbul, Turkey, 22-26, 2006, pp.786-789.

[18] 中國材料科學學會,固態物理:http://www.mse.nsysu.edu.tw/~kyhsieh/solid/index.shtml

[19]T. J Lewis, The Piezoelectric Effect, IEEE, 2005, pp.717-720.

[20]張福學,王麗坤, “現代壓電學”,科學出版社,2001.

[21] APC International, Ltd. http://www.americanpiezo.com

[22]許溢适, ”壓電/電歪致動器”, 文笙書局,1996.

[23]行政院國家科學委員會, “微機電系統技術與應用”,精密儀器發展中心出版, 1993.

[24]周卓明, “壓電力學”, 全華科技圖書, 2003.

[25] S. Ueha, Y. Tomikawa, M. Kurosawa and N. Nakamura, Ultrasonic Motors Theory and Applications, Clarendon Press Oxford, 1993.

[26]Nam-Trung Nguyen, Xiaoyang Huang, Miniature valveless pumps based on printed circuit board technique, Sensors and Actuators, 88, 2001, pp.104-111.

[27]池田拓郎 著, 陳世春 譯著, “基本壓電材料學”, 復漢出版社出版, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code